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Fig. 1: We present RAVEN, a 3D open-set memory-based behavior tree framework for aerial semantic outdoor navigation. RAVEN not only
navigates reliably toward detected targets, but also performs long-range reasoning to plan toward distant cues and continues informed search
even when direct visual evidence is limited. It further supports multi-class object search and on-the-fly task switching within a mission.

Abstract—Aerial outdoor semantic navigation requires robots
to explore large, unstructured environments to locate target
objects. Recent advances in semantic navigation have demon-
strated open-set object-goal navigation in indoor settings, but
these methods remain limited by constrained spatial ranges
and structured layouts, making them unsuitable for long-range
outdoor search. While outdoor semantic navigation approaches
exist, they either rely on reactive policies based on current
observations, which tend to produce short-sighted behaviors, or
precompute scene graphs offline for navigation, limiting adapt-
ability to online deployment. We present RAVEN, a 3D memory-
based, behavior tree framework for aerial semantic navigation
in unstructured outdoor environments. It (1) uses a spatially
consistent semantic voxel-ray map as persistent memory, enabling
long-horizon planning and avoiding purely reactive behaviors, (2)
combines short-range voxel search and long-range ray search to
scale to large environments, (3) leverages a large vision-language
model to suggest auxiliary cues, mitigating sparsity of outdoor
targets. These components are coordinated by a behavior tree,
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which adaptively switches behaviors for robust operation. We
evaluate RAVEN in 10 photorealistic outdoor simulation envi-
ronments over 100 semantic tasks, encompassing single-object
search, multi-class, multi-instance navigation and sequential task
changes. Results show RAVEN outperforms baselines by 85.25% in
simulation and demonstrate its real-world applicability through
deployment on an aerial robot in outdoor field tests.

I. INTRODUCTION

Aerial robots are increasingly employed for autonomous
exploration and search in outdoor environments. Prior research
has largely focused on geometry-driven strategies, including
frontier-based exploration [1] and volumetric information gain
maximization [2]. While these methods efficiently cover the
spaces, they rely on geometric representations—such as occu-
pancy grids or volumetric maps—and cannot perform semantic
reasoning, for example, locating a yellow car in urban areas
or identifying machinery scattered across a construction site.

Semantic navigation has been extensively studied in indoor
environments [3-5], where robots are tasked with reaching
object goals or following language instructions. With the ad-
vent of foundation models, recent approaches have leveraged



these models for open-set object navigation [6—8]. However,
such methods remain largely confined to bounded 2D indoor
settings [3—8], where the spatial horizon is limited, the robot’s
range of possible movements is constrained, and the structured
environment provides cues for locating objects.

By contrast, outdoor semantic navigation poses two major
challenges compared to indoor settings. First, the much larger
spatial extent of outdoor scenes requires long-range search
strategies; second, the sparse distribution of target objects,
combined with the absence of a structured hierarchy (e.g.,
building — floor — room — object) demands careful strategic
planning. Some prior methods [9-11] pursue map-free naviga-
tion with reactive policies that leverage short-term observation
histories, which often generate short-sighted behaviors. Other
works attempt semantic navigation in outdoor scenes using
graph representations; however, they construct these graphs
offline, which limits their online applicability [12, 13].

We propose RAVEN, a Resilient Aerial Voxel-Ray Mem-
ory Empowered Navigation, a novel framework for outdoor
semantic search. (1) RAVEN builds upon recent advances in
open-set semantic voxel and ray representations [14], leverag-
ing them as persistent internal memory. This open-set voxel-
ray memory not only avoids purely reactive behaviors and
enables long-horizon planning, but also supports multi-class
search and accommodates dynamic task switching, owing to its
task-agnostic nature. (2) Beyond voxel-based search for close
and reliable cues, RAVEN performs ray-based search to register
and plan over long-range distance cues, thereby addressing the
challenge of long-range reasoning in outdoor settings. (3) To
overcome the semantic sparsity of outdoor scenes, it invokes
a large vision language model (LVLM)-guided search when
needed to incorporate auxiliary cues. These search behaviors
are integrated through a behavior tree, which allows the system
to adaptively select behaviors depending on situations and to
maintain resiliency by switching strategies when one fails.
We validate RAVEN in extensive simulation environments,
and demonstrate its promising performance through real-robot
deployment testing.

In summary, our contributions are as follows:

« We present a new aerial semantic navigation framework
that leverages an open-set voxel-ray memory as an inter-
nal representation of the world and employs a behavior
tree to robustly adapt across multiple search behaviors.

o We address the challenges of long-range reasoning and
sparse semantic cues via ray-based search and LVLM
guidance within the behavior tree. Our method further
supports multi-class search and on-the-fly task switching,
an underexplored aspect of semantic navigation.

o We validate the framework by demonstrating superior per-
formance over existing baselines across diverse tasks in
simulation and further showcase its real-world feasibility
through deployment on a physical robot.

II. RELATED WORKS

Mobile robot autonomy spans diverse tasks, from explo-
ration to navigation, and building on these foundations, recent

works have explored the semantic navigation paradigm [3-5],
where robots understand and reason about semantic informa-
tion in the environment, such as object types, language, and
context, to guide their navigation.

With the rise of Vision Foundation Models (VEMs) [15] and
LVLMs [16], semantic navigation has seen tremendous growth
[17, 18]. Tasks in semantic navigation include vision-language
navigation (VLN) [17, 19, 20], where a robot executes a
vision-grounded language instruction to follow paths; object-
goal navigation (OGN) [3, 6, 21], where a robot locates and
navigates toward objects based on their categories or descrip-
tions; embodied question answering (EQA) [18], where a robot
actively explores to answer questions about the environment.

In this work, we focus on object-goal navigation. While
prior studies have primarily focused on indoor, ground robots,
and single-object scenarios, we aim to explore OGN in out-
door settings, with aerial robots, and multi-class, multi-object
scenarios—an important yet widely underexplored domain.

A. Classical Exploration and Search

Early work on robotic exploration began with frontier-
based methods using 2D occupancy grids [22]. Extensions
to 3D aerial scenarios include frontier-based fast exploration
[1] and sampling-based approaches driven by information gain
[2]. While these methods have shown strong performance in
real-world deployments, their primary focus is on mapping
and covering unknown areas, often neglecting semantic infor-
mation. Recent efforts [23] employ aerial robots to explore
regions and attempt to detect target objects. However, they
treat object discovery merely as a byproduct of map coverage
rather than performing object-goal-driven planning. In con-
trast, RAVEN leverages open-set semantic voxel-ray memory
and LVLM to guide planning, while retaining the robustness
of traditional methods when semantic guidance is insufficient.

B. Map-free Semantic Navigation

Building on the success of vision language models (VLMs)
and multi-modal LLMs, recent works explored zero-shot
semantic navigation that uses semantic priors to interpret
observations and directly generate control commands. Early
approaches relied on contrastive VLMs such as CLIP [15] to
sequentially guide the robot [7]. Later works leverage LLMs’
reasoning capabilities [24] and emphasize incorporating mem-
ory to go beyond reactive planning, e.g., by buffering past
FPV frames [10, 20] or maintaining textual summaries of past
observations and actions [17]. This map-free paradigm has also
been applied to VLN [9, 10] and OGN [11] in aerial robotics.

However, the FPV-based map-free paradigm typically pro-
duces discrete control commands, bypassing motion continuity
and showing limitations in collision avoidance. Moreover,
relying on latest frames or heuristically selected history suffers
from information loss [17], limiting applicability to long-
horizon planning. In contrast, our approach leverages a 3D
spatially grounded open-set semantic memory that efficiently
aggregates in-range and out-of-range observations into a per-
sistent internal representation, enabling long-horizon planning.
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Fig. 2: Overview of RAVEN. From image, depth, and pose inputs, the mapper builds an open-set 3D semantic voxel-ray map that serves as
persistent memory. A behavior tree adapts the robot’s actions: it performs semantic voxel-based search when reliable cues exist within depth
range, switches to semantic ray-based search when only long-range directional hints are available, invokes an LVLM to suggest auxiliary
objects when no target is visible, and defaults to frontier-based exploration if all strategies fail.

C. Map-based Semantic Navigation

To address limitations of LLMs’ spatial reasoning [25]
and support longer-term observation storage, many works
adopt spatial mapping approaches. In these methods, semantic
information from observations is encoded and aggregated
into either: (1) dense representations, such as 2D bird’s eye
view (BEV) grids—often combined with semantically scored
frontier maps [3—6]—or 3D voxel grids [14, 26]; or (2) graph-
based representations, including scene graphs that associate
semantics with scene entities [27-29].

Graph-based approaches have a lower memory footprint but
are often computationally expensive to construct, with many
generated offline before use [12, 13, 26-29]. Furthermore,
their heuristic-driven graph structures typically assume regular
indoor layouts, making them difficult to generalize to outdoor
environments [30]. Similarly, 2D BEV-based approaches [3—
6, 8], while capable of online guidance, are largely applied to
indoor ground-robot scenarios, assuming constrained spatial
ranges and hierarchical indoor structures.

Recently, RayFronts [14] introduced a real-time, online
mapping framework that generates a dense semantic repre-
sentation using a single forward pass. It encodes in-range
observations as voxels and out-of-range observations as rays,
enabling object localization given a fixed trajectory and
explicit queries. We leverage this representation as a memory
to actively guide an aerial robot toward goal objects and
generate reasoning-based queries via an LVLM, enabling
the system not only to navigate toward targets, but also to
strategically identify auxiliary cues to support efficient search.

III. METHOD

The core of RAVEN is a behavior tree that adapts search
behaviors, leveraging a 3D open-set semantic voxel-ray rep-
resentation as a memory. We first provide a brief overview of
the voxel-ray mapping, and then focus on behavior modules
in detail. The overall pipeline is illustrated in Figure 2.

A. Preliminary: Open-Set Semantic Voxel-Ray Mapping

We build upon the encoder and the open-set 3D voxel
and ray mapping pipeline from RayFronts [14]. Specifically,
at each timestep ¢ the robot receives an RGB image [, and
depth measurement D,. The encoder E processes the image to
produce vision-language aligned features f, = E(I;). From the
depth sensor, we construct a set of 3D occupancy voxels O;
and detect frontier regions F;. The image features are projected
onto the voxel grid, resulting in semantic voxels:

V; = PROJECT(f;, O;). (D

In parallel, we cast outward rays from J;, and similarly project
the features f; onto them, yielding semantic rays:

R, = RAYPROJECT(f;, F}). 2)

Rays serve to encode semantic information beyond the depth
coverage, complementing V;. Unlike a frontier f € F;, which
is represented as a single 3D point, each ray r; € R; has its own
3D origin and directional vector. Multiple rays may share the
same frontier as their origin, with each ray pointing a different
direction. These directions are computed via image projection,
preserving accurate orientation. Rays also provide a much
sparser representation than the full set of image observations,
enabling efficient encoding of distant semantic cues.



B. RAVEN: Behavior Tree for Resilient Adaptation

This subsection presents our main contribution: a set of
modular behaviors for 3D aerial outdoor semantic navigation.
We describe each module, and conclude by explaining how
they are integrated into a single behavior tree architecture.
Initialization: At the beginning of each episode, the robot
takes off from its starting location and ascends to 5m. As
in [6], it also performs a 360° rotation in its place to obtain a
holistic view of the environment. This step ensures a consistent
start across trials and sufficient altitude for safe exploration.
Frontier-based Exploration: The aerial robot defaults to
frontier-based exploration when no relevant semantic cues
are available. Frontiers F; are clustered using DBSCAN with
parameters € and min_samples, yielding a set of frontier cen-
troids C. Each centroid is scored by a weighted combination
of its distance from the robot’s position and a momentum-
based penalty for sharp heading changes. The centroid with
the lowest score is then selected as the next waypoint.
Semantic Voxel-based Search: As the robot explores, in-
formation captured in the RGB images and falls within the
depth range is stored in semantic voxels V;. Each voxel
v € V, contains a semantic feature f(v) produced by RayFronts
encoder. For comparison with target object classes, we adapt
these features into the SIGLIP embedding [31] space. For a
given task, we compute the cosine similarity between SIGLIP-
adapted voxel feature f(v) and the SIGLIP embedding of each
target object class query q; (e.g., SIGLIP(“water tower”)):

f(v)-q;
s(nqj) = =——"—
M Tl

where J is number of object classes in the task. Be-
cause multiple text queries can be evaluated in parallel, this
formulation naturally supports multi-class navigation. Voxels
exceeding a similarity threshold &,,x are retained:

j=1,...,J 3)

“4)

To approximate object-level regions, connected component
labeling (CCL) is applied to Vgjeered, grouping adjacent voxels
into clusters while filtering out small outliers.

Vﬁltcrcd = {V c Vt ‘ 3 J s.t. S(‘G‘lj) > Evox}

{Cl g 7CN} — CCL(Vﬁltered) S.t. |Cn| Z Tmin (5)

These clusters serve as candidate object hypotheses and
are visited sequentially, starting from the closest. For safe
navigation, a global waypoint is set just outside the cluster’s
bounding box, offset outward by Q.

Semantic Ray-based Search: While V; stores information
about nearby objects, outdoor navigation often requires rea-
soning about objects that lie far beyond the depth range.
To capture such long-range cues, we employ semantic rays
R;, which encodes information about distant objects that are
briefly visible in the RGB images but outside depth coverage.

A set of rays R, = {ry,..,rn} is cast outward in multiple
directions beyond the current frontiers J;. Each ray r; is
associated with semantic features f(r;), which is adapted to
SIGLIP embeddings f(r;). For a given task, we compute
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Fig. 3: (a) When no information exists within depth range, the robot
activates semantic ray navigation for long-range coarse search, using
ray features where the tower was briefly captured in the RGB view.
(b) As it follows the rays and approaches the target, voxels naturally
form and the search transitions to precise voxel-based navigation.

cosine similarity between the ray features f(r;) and the SIGLIP
embedding features of the text queries q; corresponding to the
target objects:

f(ri) - q;
s(ri,q;) = = ' (6
7 k)l
Rays with similarity above a threshold €,,, form the subset:
@)

Riiltered = {ri S Rt|mjf_1xs(ri7qj) > sray}

When Réjereq 7 0, ray-based search is initiated. The rays in
Riilterea are grouped into angular bins {Bi,By,...,Bx}. Each
group By, is scored using a weighted combination of proximity
Pprox (Bx) and density @dens(By):

Score(Bk) =0- ¢prox (Bk) + ﬁ . ¢dens (Bk) )

The robot selects the highest-scoring By as a global waypoint.
As the robot follows selected rays and approaches the
object, semantic voxels naturally begin to form, at which
point the system transitions smoothly into voxel-based search
for more precise localization (Fig. 3). This ray-based search
enables long-range reasoning beyond what voxels alone can
achieve and provides additional benefit—it introduces a persis-
tent memory: once observed, an object’s information remains
encoded in the rays even if it is no longer visible in the current
image. This motivates our next discussion on memory.
Task-Agnostic 3D Voxel-Ray Memory: Together, the seman-
tic voxels V; and semantic rays R, constitute a unified spatial-
semantic memory that accumulates observations over time
without overwriting earlier data. This persistent representation
explicitly encodes both geometry and semantics, enabling
long-horizon planning in large, unstructured environments.

A key feature of our approach is that the voxel-ray memory
is task-agnostic, distinguishing it from approaches that rely
on task-conditioned 3D maps. In task-conditioned methods,
even open-vocabulary models still require a predefined set of
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Fig. 4: Open-set semantic voxel-ray map serves as memory. When
the first task (“radio tower”) is given, the robot navigates toward it.
Upon introduction of a second task (“bridge”), it queries the existing
memory and uses highlighted cues to guide search. Yellow voxels
and rays indicate task-relevant highlights.

tasks (object types or queries) to guide the mapping process.
In contrast, our memory is task-agnostic, meaning that no
predefined queries are needed during mapping, and the task
can even change on the fly. When a new task arises, the robot
can align the new query with the existing voxel-ray memory
using a similarity score to select relevant voxels and rays.

This property makes our method particularly suitable for
online mapping. As illustrated in Figure 4, while the robot is
creating a semantic voxel-ray memory to locate the first task
object (e.g., a radio tower), it can seamlessly handle a new
task introduced midway (e.g., a bridge) without rebuilding the
map. Instead, it simply compares the new query to the existing
memory and identifies the most relevant voxels and rays.
LVLM-guided Search: While semantic voxels and rays cap-
ture information within and beyond the depth sensor range,
both can fail if the target objects never appear, even briefly,
in any RGB images. To handle such cases, we introduce an
additional search strategy guided by an LVLM. At sparse
intervals Tiym, the LVLM is queried with the current image
I; and a prompt P, producing auxiliary objects aux; that are
semantically related to the targets.

{aws;}1 < LVLM(P, 1)) 9)
These auxiliary cues are converted into additional text

queries and fused into the ray-based search, enabling the robot
to pursue contextual objects as guidance toward the target.

Jﬂl.lX
0= {qj}jzl U {qauxj}j:1

£(r:) - q;

s(ri,qi) = =———"—
U9 = i a1
The remaining procedure follows the standard ray-based
search strategy. We employ InternVL3-2B [16] as the LVLM.
Behavior Tree Integration: To coordinate the navigation
modules, we use a behavior tree (BT) that structures modular
behaviors and ensures robust execution. After initialization,
control proceeds through a priority-based sequence:

(10)
ri €R, q; € o

« Semantic voxel-based search: prioritized first, as nearby
objects within depth range provide the most reliable cues.

« Semantic ray-based search: used when voxel cues are
insufficient, using distant observations for long-range
coarse guidance.

« LVLM-guided search: provides auxiliary cues from
sparse LVLM queries when needed.

o Frontier-based exploration: fallback strategy to main-
tain coverage of unexplored regions when semantic cues
are unavailable.

This modular BT design offers two key benefits: (i) it en-
ables autonomous selection of the most suitable behavior for
each state, and (ii) it guarantees resilience and robustness by
sequentially activating alternative strategies when one fails.

C. Local Trajectory Planning

For local trajectory planning and collision avoidance, we
use DROAN [32], a disparity-based algorithm that inflates the
configuration space around detected obstacles in the disparity
image. The local planner selects the best path from a library of
candidate trajectories and, given a global waypoint, generates
a collision-free trajectory toward the target.

IV. SIMULATION EXPERIMENTS
A. Simulator, Environments, and Experiment Setup

We conduct photorealistic robot simulation using NVIDIA
Isaac Sim. Since no standard benchmark exists for outdoor
semantic navigation, we design ten environments: one digital
twin of a real-world site and nine designed simulated scenes.
To introduce a variety of conditons, each environment is tested
with three starting poses. The ten simulation environments are
shown in Fig. 5. We deploy our custom aerial robot autonomy
stack in these environments. The robot model is based on the
Spirit platform from Ascent Aerosystems, and all experiments
are run on an NVIDIA RTX 6000 Ada GPU.

B. Tasks

Unlike prior works that typically consider single-OGN
tasks, our task formulation generalizes to multi-class, multi-
instance settings, as well as sequential task scenarios.
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Fig. 6: (a) Trajectories of RAVEN (red), VLFM-3D (blue), FPV+LVLM (green) for finding fuel tanks. FPV+LVLM relies on recent views
and reactive policies, producing a meandering path. VLFM-3D uses a value map but chases momentary maxima, yielding myopic behavior.
RAVEN leverages semantic rays for long-range reasoning, generating an efficient path. (b) RAVEN trajectory for locating cafe tables and
bankomats. Starting with empty memory and failing voxel-ray search, the robot invokes LVLM, which suggests sidewalks and building as
auxiliary cues for bankomats. Following rays pointing sidewalk, it finds the bankomats, turns back, spots and navigates to the cafe tables.

LVLM suggests

Type I: Single-Class Tasks: All target instances belong to a
single class ¢ € C:

GS={gm|gmofclassc,m=1,.... M}, ce€C

This includes either a single instance (M = 1) or multiple
instances (M > 1) of that class.

Type II: Multi-Class Tasks: Target instances span multiple
classes Crarger C C:

S= |J {gnlgn of class c}

ce etarget

The agent must navigate to all instances in these classes.
Type III: Sequential Dual-Class Tasks: Target classes are
revealed sequentially. Let G| and G, denote the first and second
class instances, respectively. The robot must first find at least
one instance of Gi; once found, G, is revealed.

5=561U5,

This task evaluates the robot’s ability to exploit internal maps
and past observations to quickly search for the second class.

with G, revealed after first G; is found

C. Metrics

Single-OGN is commonly evaluted by Success Rate (SR)-
whether the robot reaches the goal within budget—and its path-
efficiency variant Success weighted by Path Length (SPL)
[3, 5, 6]. In multi-OGN tasks, however, a binary success
criterion fails to capture partial completion. We therefore adopt
the Progress and Progress weighted by Path Length (PPL)
metrics, introduced in [21].

Progress: Let a task specify M target object goals G =
{g1,...,gm} (each instance counts separately). If the robot
reaches K of them within the budget, we define

K
Progress = —.
M

In the single-object case, this reduces to the standard SR.

Progress weighted by Path Length (PPL): Let p be the
length of the executed trajectory up until the K-th distinct goal
is reached (set PPL= 0 if K = 0). PPL normalizes progress by
trajectory length p and compares it to the optimal path length
dk visiting the best subset of K goals in the best order.

PPL = . E

p M

In single OGN, PPL reduces to standard SPL.

D. Baselines

We select three baseline categories for comparison: one
representing classical exploration and search, one representing
map-free semantic navigation, and one representing map-based
semantic navigation as the state-of-the-art baseline.

o Frontier-3D [23]: A classical frontier-based exploration
method, extended to 3D aerial robot settings.

¢ FPV+LVLM: A map-free semantic navigation approach
that maintains a short history of recent FPV frames and
prompts LVLM [16] to output discrete action commands.

« VLEM-3D [6]: A 3D extension of the SOTA 2D BEV
online OGN method, VLFM. The image encoder and
local planning are adopted from our approach.

We also ablate the impact of each component of our method:

« Semantic Voxels: Excludes rays and LVLM to assess the
effect of ignoring long-range observation encoding

« Semantic Rays: Excludes voxels and LVLM to assess the
impact of lacking precise in-range localization

o Semantic Voxels + Rays: Uses both voxels and rays but
no LVLM to measure the benefit of auxiliary cues.

E. Comparison to Baseline Methods

We compare the performance of RAVEN with all baselines.
RAVEN achieves the best performance across all three task



TABLE I: Comparison of RAVEN with baselines.

Progress and PPL are reported for each task type.

Task Type I (40 tasks)

Task Type II (30 tasks)

Task Type III (30 tasks) All Tasks (100 tasks)

Progress(%) PPL(%) | Progress(%) PPL(%) | Progress(%) PPL(%) Progress(%)  PPL(%)
Frontier-3D [23] 6.33 3.18 4.95 2.52 3.33 2.09 5.02 2.66
FPV+LVLM [16] 17.09 7.19 11.88 5.57 8.33 3.32 12.91 5.54
VLEM-3D [6] 35.34 19.79 27.59 15.48 24.45 10.78 29.75 15.79
RAVEN 54.19 37.28 42.08 25.04 52.78 31.55 50.14 31.89

TABLE II: Ablation results of RAVEN. Progress and PPL are reported for each task type.

Task Type I (40 tasks)

Task Type II (30 tasks)

Task Type III (30 tasks) All Tasks (100 tasks)

Progress(%)  PPL(%) | Progress(%) PPL(%) | Progress(%) PPL(%) Progress(%)  PPL(%)
Semantic Voxels (No Rays, LVLM) 19.26 11.92 12.52 8.21 12.22 7.64 14.63 9.52
Semantic Rays (No Voxels, LVLM) 39.75 28.76 30.77 17.13 41.67 20.52 34.47 22.81
Semantic Voxels + Rays (No LVLM) 50.05 34.55 38.87 22.99 53.89 30.83 47.85 29.96
RAVEN (Sem Voxels + Rays + LVLM) 54.19 37.28 42.08 25.04 52.78 31.55 50.14 31.89

RAVEN (water tower) _ G
RAVEN (red building)

landmark (ground view)
—

Fig. 7: (a) Robot hardware design (b) Front view of compute and camera payloads (c) RAVEN’s real-robot navigation trajectories toward the
water tower (light blue), red building (red), and the frontier-based exploration trajectory (yellow), and their first-person, ground view images.

types, followed by the map-based VLFM-3D, then the map-
free FPV+LVLM, while the non-semantic frontier-based ex-
ploration performs worst, as shown in Table I. In particular,
RAVEN delivers 68.5% relative improvement in Progress and
102% relative improvement in PPL over VLFM-3D.

Figure 6(a) illustrates single-class navigation to fuel tanks
from the same start position with three methods. The map-
free FPV+LVLM relies only on recent FPV frames and LVLM
prompts; without a consistent map it produces a reactive, me-
andering path, resulting in low efficiency. VLFM-3D benefits
from a value map obtained by projecting similarity scores
onto frontiers, which allows eventual goal finding; however,
its motion remains myopic, repeatedly chasing the momentary
maximum in the value map and yielding an unstable trajectory.
In contrast, RAVEN activates semantic rays as soon as the fuel
tank is briefly captured in an RGB image and travels nearly
straight to the goal, producing a highly efficient path.

Figure 6(b) showcases a multi-class task and the role of
LVLM. The robot is tasked to find cafe tables and bankomats,
neither initially encoded in voxels or rays. Invoking LVLM

search suggests additionally seeking sidewalk and building
to find the bankomats; incorporating these cues into ray-
search quickly guides the robot to the bankomats located on
the sidewalk near a building. The robot then reorients and
discovers the cafe tables through voxel-ray search.

F. Ablation Studies

We perform ablation studies on each component of RAVEN,
with results in Table II. For Task Types I and II, the full model
consistently outperforms all ablated variants, confirming the
benefit of every component. For Task Type III, the seman-
tic voxel+ray configuration achieves slightly higher Progress
(within the margin of error), indicating that LVLM is less
critical when sequential goal changes mainly test memory
from voxels and rays. In contrast, LVLM auxiliary cues clearly
aid in Task Types I and II.

Overall, semantic rays contribute more strongly than voxels
by providing long-range guidance when objects are far away
in large scenes, while voxels alone struggle to reason over
long distances. Nevertheless, voxel search remains essential for
precise localization near a target. Moreover, false positives in



ray search can be particularly detrimental, as they may mislead
the robot over long distances. These results indicate that voxels
and rays are complementary, and both are necessary.

V. REAL-ROBOT EXPERIMENTS
A. Hardware Design

We use an aerial robot based on the Ascent Aerosystems
Spirit platform, equipped with custom payloads. These include
an NVIDIA Jetson AGX Orin for onboard computation and a
ZED X camera providing RGB and depth for online mapping.
Due to unreliable onboard pose estimation, we use GPS
odometry. The robot components are shown in Figure 7(a), and
the Orin AGX and ZED X payloads is shown in Figure 7(b).

B. Experiments and Results

We conducted real-world experiments using onboard com-
puting with semantic voxel-ray online mapping and RAVEN,
while leaving onboard LVLM integration for future work.
Field tests took place at a firefighter training site. RAVEN was
evaluated on two tasks—finding a water tower (beyond depth
perception range) and finding a red building—and, for ref-
erence, a frontier-based exploration run was also conducted
without a specific target. Since no oracle path exists in the
real environment, the PPL metric is not applicable; instead, we
report qualitative outcomes, trajectory lengths, average flight
speed, and real-time mapping rates. The frontier-based method
achieved a total flight distance of 40.46m with an average
speed of 1.29m/s, but wandered without purposeful heading.
Using RAVEN, the robot incrementally built a semantic voxel-
ray memory and navigated toward the water tower and red
building, as shown in Figure 7(c). The trajectory lengths for
the two tasks were 74.97m and 42.72m, respectively, with an
average flight speed of 1.21m/s. The onboard mapping module
operated in real time at an average rate of 4.8Hz.

VI. CONCLUSION

We present RAVEN, a resilient behavior tree framework for
aerial semantic navigation in outdoor environments. It uses an
open-set semantic voxel-ray memory to enable strategic, long-
horizon planning. RAVEN combines semantic voxel search for
precise nearby localization, semantic ray search for long-range
reasoning, and LVLM-guided search to mitigate sparse targets.
We validate RAVEN through extensive simulation experiments
and demonstrate its real-world applicability with initial aerial
robot deployments.
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