
Active Sensing for Target Tracking in Dynamic Environments
using Autonomous Surface Vehicles

Sanjeev Ramkumar Sudha, Marija Popović, and Erlend M.Coates

Abstract— Mobile robots are becoming increasingly common
for monitoring and inspection tasks. The cleanup of pollutants
with autonomous surface vehicles in rivers and the oceans is
one such important application. However, monitoring in marine
environments is challenging due to the dynamic nature of the
environment. Planning informative paths in such environments
requires maintaining an accurate map by predicting the spatial
and temporal variations. Therefore, we present our active sens-
ing approach for tracking moving targets in dynamic environ-
ments, in real time. We introduce a spatiotemporal prediction
network to predict the uncertain future target distributions.
Our adaptive planning approach leverages predictions from
this network with a new planning utility for target tracking. It
is also validated through field deployments with an autonomous
surface vehicle.

I. INTRODUCTION

Autonomous robot platforms offer an efficient alternative
for information gathering [1] and environmental monitoring
as compared to traditional approaches such as manual and
teleoperated surveys [2], or sensors placed at fixed loca-
tions [3]. Some applications in environmental monitoring
include pollutant cleanups [4], search and rescue [5], and
wildlife monitoring [6]. Timely mapping and subsequent
collection of floating pollutants such as plastic litter is
crucial, as they can break down into toxic microplastics and
prove harmful to humans and marine animals if allowed to
persist. However, monitoring in dynamic environments is a
challenging problem, as the robot has to predict and react to
changes in the map to collect newly acquired information in
an efficient way.

This study focuses on active sensing for tracking freely
floating targets of interest, such as plastic litter, with an
autonomous surface vehicle (ASV). Such targets generally
drift due to external disturbances such as wind and currents.
We aim to keep an updated global map of target positions
through a dynamic occupancy mapping approach. We also
use an adaptive planning strategy to plan informative tra-
jectories for the robot, using predictions from our proposed
spatiotemporal prediction network.

In active sensing, the goal is to find robot actions that max-
imise the information gathered, subject to constraints such
as maximum allowed mission time or energy [7], [8]. The
informativeness or utility is generally quantified by entropy-
based measures in the map, which is updated as the robot
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Fig. 1: Our autonomous surface vehicle (ASV) during field
deployments for active mapping of dynamic floating targets
of interest, such as the buoy in the picture. We use four buoys
during the tests, which are freely drifting under the influence
of winds and currents.

acquires new sensor observations. For static environments,
reducing entropy achieves efficient spatial coverage [9], [10].
However, in spatiotemporally varying environments such as
target tracking applications, predicting the changes in the
map over a certain time horizon is crucial.

Traditional target tracking techniques [11] involve identi-
fying and estimating the states of individual targets through
a series of observations. Occupancy grids provide a more
efficient alternative for target tracking by maintaining a
single global map with the target positions represented as
occupancy probabilities [12], [13]. Previous works on occu-
pancy grid mapping in dynamic environments [12], [14] rely
on observations to learn the state transition probabilities. In
contrast, we leverage the fact that the drift of the targets can
be approximated [15], [16] given the measured wind velocity.

Prior studies in informative planning for monitoring in
dynamic environments [4], [17], [18] assume that the dynam-
ics can be reliably predicted in advance or assume perfect
localisation of the targets of interest. In reality, the environ-
mental forces are stochastic and hard to predict in advance.
To address this issue, we propose using a physics-informed
prediction network that is independent of the number of
targets to predict their positions represented as uncertain
spatial distributions. This also enables probabilistic reasoning
for effective decision-making by considering these uncertain
predictions over longer horizons.

To overcome these limitations, we have proposed a frame-
work for active mapping of freely drifting targets, such as
plastic litter, with an ASV. A key component of our approach



is a spatiotemporal prediction network that predicts uncertain
future target position distributions. We then combine these
predictions with our adaptive planning utility. We validate
our approach through field deployments with a custom
ASV. This paper follows our recent work [19] by providing
additional details about the experimental setup, training
procedure of the network, and an extended discussion about
the limitations of this study and possible future directions
for this line of research.

The rest of the paper is organised as follows. First, we
formally define the problem in Sec. II. Our approach from
[19] is summarized in Sec. III, while Sec. IV provides
additional details about the experimental setup and discusses
results. We discuss some challenges and potential future
research directions in Sec. V. Finally, Sec. VI concludes this
study.

II. PROBLEM STATEMENT

We consider the active sensing problem for resource-
constrained robots, where the aim is to find an optimal
robot sequence of actions T ∗ that maximises the following
objective:

T ∗ = argmax
T ∈Ψ

I(T ) s.t. C(T ) ≤ B , (1)

where T is a trajectory from the set of all feasible action
sequences Ψ, with associated cost C(T ), which does not ex-
ceed the budget B. An information-theoretic measure, I(T )
is used to quantify the informativeness of the measurements
by performing these actions, based on the map state.

We aim to build and maintain an accurate occupancy
map of dynamic target positions with a limited time budget.
We consider the application of mapping floating targets of
interest, such as plastic debris, using an ASV. Such targets
on the water surface are subject to environmental forces
like wind, current, and waves. Mapping in such scenarios
requires the ASV to trade off between two potentially
conflicting objectives: explore still unvisited regions in the
environment, or redetect already detected targets to improve
confidence in their positions. Therefore, we have defined a
novel informative planning utility for dynamic target tracking
scenarios that caters for both objectives to achieve efficient
decision-making.

III. OUR APPROACH

An overview of our active sensing approach is shown in
Fig. 2. We use a stereo camera onboard the ASV to detect
targets of interest and use a dynamic mapping approach,
as described in Sec. III-B. We introduce a spatiotemporal
network for predicting the uncertain target positions over a
given time horizon. The training procedure of the network
is also discussed in Sec. III-C. Our proposed informative
planning utility, as described in Sec. III-D, leverages pre-
dictions from this network. We open-source our code at
github.com/sanjeevrs2000/ipp dyntrack.

Fig. 2: An overview of our framework. A stereo camera is
used to detect and map targets of interest onto a global
occupancy map. We employ a dynamic occupancy grid
mapping approach to maintain an accurate map of targets
that are drifting due to environmental disturbances. We then
introduce a neural network to predict the spatiotemporal tar-
get position distributions. The predictions from this network
are used to guide our adaptive planning strategy.

A. Perception

Targets of interest are detected through object detection
with a stereo camera onboard the ASV. We employ YOLOv8
[20] for object detection in this work. It is trained on a
custom dataset that is collected from our experiments. The
positions of the targets in the occupancy map are computed
by first estimating the depth of the object by averaging the
depth of pixels inside the bounding boxes of the detections.
It is then transformed from the camera frame to the global
frame. We then define distance-based inverse sensor models
for mapping the targets onto the global occupancy map [19].

B. Dynamic occupancy grid mapping

We use an occupancy grid for mapping the targets of
interest. We update the map in a two-stage fashion at every
time step. First, the map is updated with the probabilistic
occupancy grid mapping algorithm [21]. In the prediction
step of the mapping, the map is updated to compensate for
the drift of the targets due to external disturbances such as
wind and currents. For this, we use the instantaneous wind
speed, assuming that measurements are available at each
time step. Following [15], [16], we assume that the drift is
approximated to be linearly proportional to the wind velocity,
neglecting wave effects. Therefore, we assume each target to
drift by (dx, dy) =

(
γ vw cos(ψw)∆t , γ vw sin(ψw)∆t

)
,

given the measured wind speed vw and direction ψw. For
more details of this mapping approach, we refer the reader
to [19].

https://github.com/sanjeevrs2000/ipp_dyntrack


C. Spatiotemporal network

Planning informative paths for the ASV in dynamic envi-
ronments requires predicting changes in the map over a time
horizon. To make efficient predictions of the spatiotemporal
variations of target occupancies in the map, we introduce our
spatiotemporal network, which uses a modified UNet struc-
ture [22]. The input to this network is a binary occupancy
grid denoting target positions, and a vector of the measured
instantaneous wind speed, and the prediction time step tk are
added as additional inputs into the latent space of the UNet.
The output is a grid of the same size with the predicted
spatial distributions of target occupancies at time t + tk in
the future.

A binary mask is applied to the current state of the global
occupancy grid. This masked binary grid is an input to the
network. Each occupied cell in this masked grid is assumed
to translate at the current wind speed over the planning
horizon. The uncertainty region for each target in the map is
represented as a 2D Gaussian kernel with standard deviations
proportional to the time horizon and the wind speed. The
principal axis of each kernel is assumed to be along the
direction of the wind measured at that instant.

To train the network, we generate a synthetic dataset
simulating random target positions and compute correspond-
ing output distributions for various combinations of wind
conditions and prediction time intervals. We consider vw =
{0, 3, . . . , 12}, ψw = {0, π4 , . . . ,

7π
4 }, and prediction inter-

vals t = {0, 5, . . . , 25}. We generate 100 binary grids of sizes
100 × 100 with varying numbers of targets and positions.
scenarios. To further generalise the training set, in each of
these scenarios, the number of targets is chosen between
0 − 20 with their positions being drawn from a uniform
distribution inside the map. This leads to a training set of
size 24000 images and associated vector inputs, for diverse
combinations of wind conditions and prediction intervals.
The network is trained in minibatches with mean absolute
error (MAE) as loss, for 100 epochs with an Adam optimiser
at a learning rate 0.001. Training is performed on a computer
equipped with an Intel Core i7-12700H processor, 32 GB
DDR5 RAM, and an NVIDIA RTX 3050 Ti GPU.

D. Adaptive planning

For target tracking in a priori unknown environments,
the ASV is required to explore the map and attain better
estimates of target positions by redetecting them at frequent
intervals. Therefore, the ASV also needs to replan at frequent
intervals to account for the dynamic nature of the map. We
propose a new utility, as shown in Eqs. (2)-(3) for adaptive
informative planning that combines the two objectives, i.e.
exploration and target tracking.

I(T ) =
[
H(M| zT )−H(M)

]
+

w

|T |
∑
t

J(xt) , (2)

J
(
xt

)
=

∑
i,j

e−2·pij(t)

|fov(xt)|
, ∀(i, j) ∈ fov(xt) . (3)

Fig. 3: An illustration of the candidate trajectories with
sampling points at regular intervals assuming a constant
speed for the ASV. Each trajectory corresponds to a change
in heading relative to the current heading of the ASV. The
trajectories are then parameterised with Bézier curves to
generate smooth and continuous trajectory for the vessel. The
utility as described in Eq. (2) is evaluated for each of these
trajectories in the replanning stage.

The utility consists of two terms: the predicted change in
entropy H and the target tracking component, reflecting the
two planning objectives mentioned in Sec. II. The target
tracking information gain J (xt) at a single time step is
computed with predictions from the spatiotemporal network
p(t) for poses on the trajectory xt. The factor w is a
weighting factor to trade-off between the exploration and
target tracking objectives, that is tuned manually.

During replanning, we consider a finite set of candidate
trajectories by keeping the speed of the ASV constant, as
shown in Fig. 3. Each trajectory corresponds to a heading
change from the current heading of the vehicle. They are
then parameterised with Bézier curves to generate feasible
trajectories for the ASV. We evaluate the utility Eq. (2) for
each of these trajectories during the replanning stage and
perform planning in a finite-horizon way.

IV. EXPERIMENTS

A. Experimental setup

The Virtual RobotX simulator [23] is used for simulation
experiments. The simulator also models the physics of hydro-
dynamic effects due to waves and wind, making it a suitable
choice for our study. We use the WAM-V, a 4.8 m long
ASV, as available in the simulator with a differential thrust
configuration in the simulation experiments. Buoy markers
are generated in the simulation environment and used as
targets of interest. The wind and wave effects on the objects
are modelled according to Fossen [24].

We compare our adaptive planning strategy against the
following baselines: (i) Sampling-based planner as discussed
in Sec. III-D with exploration utility, i.e. only Shannon
entropy as utility, to evaluate our proposed utility that bal-
ances both exploration and target tracking objectives; (ii) A
greedy planner that selects waypoints greedily as opposed to



Fig. 4: Sensors onboard our ASV. We use a CubePilot
Cube Orange autopilot with integrated IMUs, and GNSS for
navigation. All our software is implemented on a Jetson Orin
Nano with ROS2 as middleware.

evaluating the utility value over the entire path. We evaluate
our approach that uses predictions over longer horizons
against a greedy planner that computes the utility with a
single time step in the future. For our planner, we adaptively
increase the tradeoff factor w (as described in Sec. III-D)
linearly from 0 to 5 during the progression of the mission,
as this is found to work best from experiments. During
replanning, consider seven candidate paths with changes in
heading ∆ψ at intervals ψ/4, and a planning horizon of 25 s
with the utility being computed as 1 s intervals. To compute
the utility as described in Eq. (2), we get predictions from the
network as a batch as simulate the occupancy grid updates
at the same frequency. We note that the replanning for the
above-mentioned discretisations and planning horizon takes
≈ 3 s on our hardware.

We also perform field experiments with an ASV (as shown
in Fig. 1), for actively mapping floating targets of interest
that are freely drifting. It is a catamaran hull that is 1.2 m
long, 0.9 m wide, and weighs 37 kg with payload. The ASV
is overactuated with four Blue Robotics T200 thrusters in
the X-configuration. It also has an emergency stop button to
kill all thrusters in the event of a communication failure. It
is equipped with a Jetson Orin Nano developer kit, and our
framework is implemented with ROS2 [25] as middleware.
An integrated IMU and GNSS are used with the autopilot
for navigation of the vehicle. We use line of sight guidance
[24] to generate reference trajectories and send the velocity
commands to the PID speed controller of the autopilot.
Additionally, we use a ZED 2i stereo camera with 72◦

horizontal field of view. Fig. 4 shows the sensors onboard
the ASV.

B. Simulation experiments

The mean entropy in the map H , and the mean detec-
tions N are chosen as metrics for comparison. The mean
detections is calculated as the average number of detections
over all time steps up to the current step during a mission.
We perform ten Monte-Carlo simulations for a mission time
of 250 s in varying wind conditions and target position
distributions. Our complete planning framework with the
dynamic map and the spatiotemporal prediction network is
evaluated against the two chosen baselines. The resulting

Fig. 5: The progression of the mean Shannon entropy H and
the mean target detections N plotted over mission time with
standard deviation margin for the simulation experiments.
The adaptive planner with the purely exploratory reward is
most effective at reducing entropy in the map, whereas our
utility is most effective at target tracking. This further high-
lights the trade-off between the two objectives, as outlined
in Sec. I.

metrics from the runs are plotted over the mission time in
5. The adaptive planning strategy with the proposed utility
is most effective at tracking targets, as it detects up to
17% more targets as compared to the greedy planner on
average. The adaptive planner with only entropy as utility
is most effective at reducing entropy in the map, but does
not track targets as well as the sampling-based planner or
the greedy planner, both using our proposed utility. This
validates the performance of our proposed planning utility,
which uses the spatiotemporal distributions of the targets’
positions from our network, thus promoting better target
tracking by more frequent redetections. Furthermore, our
planning strategy is also better at target tracking as compared
to the greedy strategy that computes the utility with a single
future time step for planning, rather than considering possible
measurements over the entire path.

C. Field tests

For the tests, we use spherical buoy markers, as pictured in
Fig. 1, to represent plastic debris in line with our motivating
application. Trials are performed on a 25m× 25m area,
centered at (62.469◦N , 6.237◦E), for a mission time of
150 s. Our complete framework is run real-time on the
embedded compute platform onboard the ASV. The map is
updated at 5 Hz, the planning horizon is set to be 25 s, and
the speed of the ASV is 0.5m/s. Replanning is performed
once the vehicle reaches the end of the current path in a
finite horizon manner. We show results from a field trial in
Fig. 6. The targets are initially located on the left edge of the
map and slowly drift toward the opposite edge of the map
as moderate winds were observed during the test towards
the East. We see that the vehicle redetects the targets at
several instants during the mission. The video of this field
deployment is also released 1.

1https://youtu.be/KaOhI2sXhrc

https://youtu.be/KaOhI2sXhrc


(a) t = 20 s (b) t = 60 s (c) t = 100 s

Fig. 6: Results from a field trial mission with the ASV showing the occupancy grid at various time instants. The ASV first
detects the targets at t = 20 s. At t = 60 s, the target position estimates are less confident as the targets go undetected for a
while, and later at t = 100 s, the ASV redetects the targets and acquires better target position estimates. A video of the field
trial is available at https://youtu.be/KaOhI2sXhrc.

The input grid to the spatiotemporal network is of size
100 × 100, and we use occupancy grids of size 25 × 25
in the field tests. We pad the masked occupancy grid with
zeros to input a grid of size 100×100, to avoid retraining the
network. While the spatiotemporal network is trained entirely
on synthetic data, we show that it works in both simulation
and field trials without any retraining.

V. DISCUSSION

In this paper, we present an adaptive planning framework
as a key step towards active sensing for monitoring in
dynamic environments with ASVs, but several open research
questions remain. We discuss some possible future directions
to address these challenges in this section.

A. Learning-based techniques for planning

We perform adaptive planning in a finite-horizon man-
ner. We note that the dynamic nature of the environment
necessitates that planning time also be taken into account.
The computational burden of our replanning approach com-
plicates decision-making at a higher frequency or using
a receding-horizon approach for planning on the fly. In
this study, we consider paths with constant speeds for the
ASV. To efficiently optimise Eq. (1) for environments that
are highly dynamic, considering trajectories with varying
speeds is also necessary, further increasing the computational
complexity of planning with larger action spaces. Learning-
based techniques [26] can help reduce runtime during the
replanning stage. Therefore, a direction for future work is
to use learning to approximate the information gains [27] to
reduce computation times, as evaluating the utility for various
trajectories is typically the bottleneck. While several studies
have explored the use of reinforcement learning for adaptive
planning in active sensing scenarios [4], [18], [28], not many
have validated them through field deployments.

B. Mapping in dynamic environments

We use a probabilistic occupancy grid with a prediction
step that accounts for the drift of the targets. Although we
find that this works in practice, it might not be accurate
enough or lead to missed target detections for other applica-
tions in highly dynamic environments. Using a continuous or
feature-based map representation is an alternative approach
[5], [18]. Another direction for further research is towards
more efficient mapping techniques for dynamic environments
to predict the spatiotemporal uncertainties in target positions.
Some prior works have explored the use of deep learning
based approaches for mapping in dynamic environments
[29], [30]. For cases where the dynamics of the environment
can be approximated with the known physics, such as in our
application, exploring the use of physics-informed learning
methods to combine the strengths of both methods could be
another research direction.

C. Multirobot cooperation for active sensing

Similarly, mapping in larger environments could also
lead to inaccurate mapping as the time between successive
redetections of a target might be large. Multirobot monitoring
presents another promising direction for future research [31],
[32]. Furthermore, some studies have explored multirobot
planning with a heterogeneous fleet of vehicles where each
robot takes different roles [33], [34]. For instance, in a fully
integrated system, a team of robots with different hardware
capabilities can take diverse roles of scout and cleaner, as
proposed in [4].

D. Foundation models for robot monitoring

Recently, vision language models (VLMs) are being in-
creasingly used in robot exploration [34], [35]. Thus, it
is another avenue of future research towards making au-
tonomous inspection and monitoring more user friendly by
acting on language inputs from a human user. They could
also help make monitoring tasks generalise well to unseen

https://youtu.be/KaOhI2sXhrc


environments and specific scenarios by using vision and
language to get a better understanding of the scene.

VI. CONCLUSIONS

In this paper, we present an active sensing approach for
mapping moving targets in dynamic marine environments
with an ASV. We discuss our experimental setup for both
simulation and real-world experiments. Simulation results
show that our proposed planning utility improves target
tracking as compared to using only entropy reduction as the
utility. We show results from field deployments using our
ASV with an onboard stereo camera, validating our active
sensing approach for tracking an arbitrary number of targets
with unknown initial positions. To conclude, we also outline
some existing challenges and future research directions.
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