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Heatmap CNN with Transformer Residuals, EMA Stabilization, and
Alignment-Aware Training Protocol
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Abstract— We present a low-cost, scalable system for 3D
skeletal pose estimation through walls using commodity
RF sensing, designed for robust active perception in hu-
man—environment interaction. Raw Walabot measurements
are rasterized into a bounded 3D voxel grid via percentile-
normalized trilinear splatting and processed by a compact 3D
CNN to generate per-frame feature volumes. A volumetric
heatmap head outputs joint-specific 3D logits, from which
coordinates are extracted by soft-argmax; per-joint heatmap
entropy provides an uncertainty measure. Short-horizon dy-
namics are modeled with a causal temporal corrector that
refines predictions using a sliding window of heatmaps.

Training integrates a focal-KL heatmap objective and an
entropy-weighted coordinate loss with PA-aligned supervision,
a height-normalized bone prior, temporal smoothness regu-
larizers, and an unsupervised RF-density guidance term. At
inference, root stability is enforced via EMA filtering and a
voxel-derived anchor blending RF centroids with top- K modes;
a small bias correction further improves alignment.

Evaluated on alignment-sensitive metrics (PA-AP, PA-
MPJPE [1]), the system demonstrates stable and accurate skele-
tal tracking suitable for edge deployment in SAR and privacy-
preserving HCI contexts. By emphasizing rigid-alignment fi-
delity over unreliable global translation/scale, the approach
achieves strong PA-AP@0.30 and PA-MPJPE with real-time
performance on consumer devices, highlighting a pathway to-
ward reliable RF-based active perception in dynamic, uncertain
environments.

[. INTRODUCTION

Radio frequency (RF) waves possess the unique ability
to penetrate common building materials, offering a sensing
modality that remains reliable in environments where optical
systems fail—such as smoke-filled interiors, collapsed struc-
tures, or unlit spaces [2]-[4]. Harnessing this property for
full-body 3D skeletal pose estimation unlocks opportunities
in safety-critical domains like search-and-rescue (SAR) and
privacy-sensitive activity monitoring, where visual sensing
may be unavailable or undesirable. The challenge lies in
extracting stable, metrically accurate joint locations from
multipath-dominated RF volumes while operating under lim-
ited compute and minimal supervision.

a) Our approach.: We introduce a fully end-to-end
framework that transforms raw Walabot captures into nor-
malized voxel grids, predicts volumetric heatmaps of joint
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likelihoods through a compact 3D CNN, and recovers metric-
space coordinates via soft-argmax. To counter frame-level
instability, a causal transformer applies short-horizon tempo-
ral corrections, refining each prediction with residual Axyz
adjustments [5]. Training is guided by a curriculum that
blends supervised volumetric and coordinate objectives with
PA-aligned optimization [6], temporal smoothness, bone-
length priors, and an unsupervised RF-density guidance term.
At inference, root stabilization is achieved by combining
EMA filtering with voxel-derived centroid/mode anchors [7],
further corrected by a lightweight calibration offset learned
from training bundles.

b) Contributions.: Specifically, this work advances RF-
based 3D pose estimation by:

« Introducing a metric-space heatmap formulation with
soft-argmax readout and entropy-based uncertainty, re-
placing fragile direct regression.

o Designing a causal temporal corrector that operates
on compressed heatmap features to suppress jitter in
streaming inference [5].

o Proposing a composite objective suite that integrates
focal-KL heatmap supervision, entropy-weighted coor-
dinates, differentiable PA-MSE [6], height-normalized
bone priors, temporal smoothness/acceleration, soft-
PCK reward, and RF-density guidance with scheduled
weighting.

o Deploying a calibration-lite inference strategy com-
bining EMA root smoothing [7], centroid/mode fusion,
bone-length projection, and a learned constant transla-
tion to mitigate residual extrinsic bias.

o Demonstrating stable alignment-sensitive perfor-
mance through multi-metric training, Optuna-tuned hy-
perparameters [8], EMA stabilization [7], and PA-
AP@0.30-based early stopping, showing the system’s
promise for real-world SAR and privacy-preserving
applications.

II. BACKGROUND AND RELATED WORK

a) RF penetration.: Through-wall RF sensing exploits
the ability of sub-GHz and ultra-wideband (UWB) signals
to traverse common building materials. Attenuation depends
on the material’s complex permittivity ¢ = ¢ — je” and
the skin depth 6 = /2p/(wu), where p is resistivity, w
angular frequency, and p permeability [2]. Empirical studies
show that UWB radar maintains usable signal-to-noise ratios
through brick, wood, and drywall [3]. However, multipath,



scattering, and dielectric mismatch cause nonlinear distor-
tions. These effects motivate voxel-based representations,
where reflections are spatially rasterized to mitigate aliasing
while preserving geometric cues.

b) Cross-modal supervision.: RF pose estimation relies
on cross-modal alignment between RF signals and optical
ground truth. Zhao et al. [9] showed that aligning RF
reflections with RGB-derived 2D joints enables networks
to transfer vision supervision to RF. Pose frameworks like
OpenPose [10] and MediaPipe [11] provide stable joint-
indexed labels. RF-specific challenges include: (i) lack of
hardware-locked synchronization between RF and optical
streams, and (ii) redundant landmarks in 33-joint schemas,
which add little RF signal and slow convergence. These
issues motivate alternatives such as heatmap targets, PA-
aligned losses [6], and bone priors enforcing anatomical
consistency.

c) Backbones and temporal modeling.: Architectures
for RF pose estimation adapt insights from vision backbones.
EfficientNet [12] formalized compound scaling, guiding
lightweight 3D CNNs for voxel data. Group Normalization
(GN) [13] improves training with small RF batch sizes,
and SiLU activations [14], [15] support gradient flow in
low-SNR regimes. Temporal modeling is critical: frame-by-
frame predictions amplify joint jitter. Causal transformers [5]
with autoregressive masking offer sequence-aware correc-
tions without future context.

d) Optimization strategies.: Training is difficult given
noisy supervision and limited RF datasets. Polyak averag-
ing [7] and exponential moving average stabilize updates,
while Stochastic Weight Averaging (SWA) [16] finds wider
optima. Adaptive optimizers such as AdamW [17], com-
bined with cosine annealing and warm restarts [18], reduce
overfitting. Hyperparameter optimization frameworks like
Optuna [8] further support systematic search over capacity,
learning rates, and loss weights.

e) Input and Output.: Many RF-pose systems rely on
video supervision or multi-frame radar with high-end ar-
rays [9], limiting comparability. We instead focus on a single-
shot RF-only setting, benchmarking against internal controls
and alignment-first metrics that isolate skeletal fidelity on
commodity hardware.

ITI. DATA COLLECTION PROTOCOL

Our dataset is built from synchronized captures of a
Walabot sensor and a single RGB camera. For each cali-
bration bundle, we obtain pseudo-3D supervision of the 33
MediaPipe joints [11] via a three-shot triangulation protocol,
where the operator repositions the camera to three static
views (shots 0/1/2). At the central shot (shot 1), the Walabot
collects multiple consecutive RF volumes, from which the
first is discarded and the remaining 5 are retained. This
redundancy accounts for RF multipath specularity: while any
single return may be distorted by constructive/destructive
interference, averaging predictions across 5 frames improves
stability.

A. Walabot RF Capture

The Walabot returns a spherical grid (7,6, ¢, a) of am-
plitudes «, where r is radial distance, # azimuth, and ¢
elevation. The arena is configured as r € [10,500] mm,
0 € [-18°,18°], ¢ € [—15°,15°] with steps Ar = 8mm,
A0 = A¢p = 2°. This yields

N = Tmax — Tmin > amax - omin > ¢max - ¢min

Ar Af Ad

voxels per scan.
Each voxel is projected to Cartesian:

T
T = ——
100’

T = —7rpy,sin g,

Y = Ty, COS @sin b,
Z = Ty COS ¢ cos 0

where the axis flip (z,y,2) = (—20, Yo, x0) aligns Walabot
coordinates with camera coordinates.

Listing 1: RF capture: Walabot trigger, spherical-to-Cartesian
projection, save to .npz

wlbt.Trigger ()

raw = wlbt.GetRawImage ()

arr = np.asarray (raw) .reshape (philen,
rLen)

thetalen,

spherical Cartesian (meters)
= r_vals / 100.0
—r_m*np.sin(phis)
r_m*np.cos (phis)+np.sin (thetas)
r_m*np.cos (phis) xnp.cos (thetas)

3

#
r_]
X
Yy
z

np.savez_compressed (out_path, x=x,y=y,z=z,amp=amps)

At shot 1, six frames are collected in sequence, the earliest
is discarded, and the remaining 5 are bundled. This procedure
mitigates transient noise and multipath specularity.

B. RGB Landmarks and Triangulation

The RGB camera (640x360) is calibrated with intrinsics
(K, D) and stereo extrinsics {FPyp, P1, P»}. For each shot,
MediaPipe Pose detects 2D landmarks {(u,v)¥} for joint i
in view k [11]. We reconstruct 3D positions X; using a linear
DLT triangulation:
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. Xi=SVD(A)[-1], Xi/X.

Listing 2: Triangulation of 33 MediaPipe joints from 3 shots

for i in range(n_joints):

A =[]
for cam_idx in range(3):
P = P_mats[cam_idx]
u,v = uv_list[cam_idx] [i]

A += [uxP[2]-P[0], vxP[2]-P[1]]
_,_,Vt = np.linalg.svd(np.stack (A))



Fig. 1: Overall experimental setup, showing Walabot RF
sensor, camera, and reference geometry.

X = Vt[-1]; X /= X[3]
XYZ[i] = X[:3]
XYZ[:,2] = -1

The triangulated 3D landmarks serve as pseudo-ground
truth, co-timestamped with the corresponding 5 Walabot
frames.

C. Bundling

To ensure reproducibility and maintain strict synchroniza-
tion between RF and RGB modalities, all artifacts from a
capture session are consolidated into a timestamped directory
of the form bundle_YYYYMMDD_HHMMSS/. Each bundle
contains three components:

e walabot_data/ —the 5 RF frames retained after pre-
roll discard, stored as amplitude + Cartesian coordinates
in compressed .npz files.

e RGB_camera._data/ — raw images, 2D MediaPipe
landmarks, and calibration intrinsics for each of the
three static shots [11].

e reconstruction.npz — the pseudo-3D ground-
truth skeleton obtained via three-shot triangulation.

IV. METHOD
A. RF voxelization and augmentations

We convert each Walabot frame into a dense 3D volume
by trilinear splatting of amplitude-weighted points over a
fixed grid of 64 x 48 x 64 spanning meters:

z€[-5,5, ye[-2525], z€]0,5.

Intensities are clipped at the 98th percentile and normalized
to [0, 1]. We apply random yaw about y (up to £8°), £0.07 m
translation, amplitude dropout (15 %), and point drops (10 %)
while preserving tensor shape. Sliding windows use 7'=5
frames, with labels corresponding to the last frame. Active
perception link: these perturbations simulate sensor re-aims
or small viewpoint changes that could be enacted online to
reduce ambiguity.

Fig. 2: Three-shot triangulation protocol for RGB land-
marks [11]. (a) Camera shot 0 (left view). (b) Camera shot
1 (center view). (c) Camera shot 2 (right view).

B. Backbone, heatmaps, and temporal residuals

The backbone is a compact 3D CNN designed for low-
SNR RF volumes and small-batch training. Each voxel grid
(64 x 48 x 64) passes through 3D convolutional layers with
Group Normalization (GN) [13] (stable under batch < 8)
and SiLU/Swish nonlinearities [14], [15]. A lightweight



Squeeze-and-Excitation (SE) block after the third stage
improves channel recalibration and robustness to multipath.

A final 1x1x1 convolution projects features into J joint-
specific volumetric heatmaps. Joint coordinates are ex-
tracted with a differentiable soft-argmax, while heatmap
entropy serves as an uncertainty proxy: sharp peaks =
confident predictions; diffuse distributions = ambiguous
ones.

To stabilize predictions over time, a small causal trans-
former encoder [5] processes compressed heatmap features
from the last T'=5 frames using autoregressive masking. It
outputs per-joint residuals Axyz added to the instantaneous
prediction. Empirically, scaling by 0.25 prevents overshoot
while damping jitter—critical for real-time streaming.

Auxiliary heads: person presence and similarity align-
ment.: Two compact heads branch from pooled features: (i)
a person-presence classifier for gating updates in low-return
frames, and (ii) a similarity head predicting (s, R,t) (with
rotod for R) trained with a consistency objective against
differentiable Procrustes alignment [6]. This provides a soft,
learnable alignment prior without heavy offline calibration.

RF-density guidance.: Let E € RP*XH*W be the per-
frame voxel energy. We normalize to £ = softmax(E/7)
and encourage each predicted heatmap H; to agree softly
with E:

Lovide = Ag iKL (1,1 E),

Jj=1

with )\, cosine-ramped over training. This preserves multi-
modality and allows the network to override misleading
energy.

Root fusion (EMA + centroid/mode).: The pelvis root p;
from soft-argmax is fused with the previous root p;_1 using
three strategies: (i) EMA smoothing [7], (ii) centroid of the
top-K heatmap voxels, and (iii) mode (argmax). Entropy
H(Hoot) gates the fusion: low-entropy = centroid/mode;
high-entropy = EMA. Active perception link: high root
entropy can signal the need for sensor dwell or micro re-
aims to reduce uncertainty.

Together, (i) a GN-SiLU 3D CNN with SE recalibration,
(i1) volumetric heatmaps with entropy-based confidence, (iii)
causal transformer residual refinement, and (iv) auxiliary
heads for presence and similarity alignment yield temporally
stable, interpretable trajectories even under noisy RF super-
vision. The use of entropy and energy not only regularizes
training but also suggests cues for active perception, where
the system can decide to dwell, re-aim, or suppress updates
based on confidence.

C. Root handling and kinematics

We treat the pelvis (mean of the hip landmarks) as the
skeleton’s root, central in the kinematic tree and relatively
robust to occlusion. Training is pelvis-centered, ensuring
supervision emphasizes relative alignment rather than global
drift.

At inference, absolute root predictions are unstable due to
multipath and noise. We stabilize with two lightweight steps:

(i) an Exponential Moving Average (EMA) [7] of root co-
ordinates to suppress jitter while preserving long-term drift,
and (ii) a voxel-driven anchor combining intensity centroid
and top-K energy modes, blended with EMA output. This
hybrid anchor resists specular bias and keeps the root within
supported RF regions. Active perception link: high entropy
in the root heatmap signals the system to dwell for more
frames or attempt a micro re-aim to reduce uncertainty.

After stabilization, we enforce Kkinematic consistency
by rescaling bone segments to match a height-normalized
template from the training distribution. This prevents limb
collapse or elongation and yields visually plausible poses
without requiring a full parametric body model.

D. Calibration-lite

Full extrinsic calibration with fiducials or mocap is
impractical for rapid deployment. Instead, we adopt a
calibration-lite strategy. Scene metadata and axis remapping
provide a coarse world—RF transform. Residual offsets
remain from unsynchronized capture and multipath.

To correct this, we estimate a constant translation off-
set At using differentiable Procrustes alignment (Umeyama
similarity transform) [6]. The median pelvis residual across
training bundles gives a robust estimate, applied at inference
to all joints.

This yields (i) practicality—no dedicated calibration, (ii)
robustness—resistant to noisy pseudo-labels, and (iii) gen-
erality—reusable across subjects and scenes. While scale
and rotation errors persist, accuracy improves with negligible
compute. Active perception link: entropy-weighted pelvis
confidence could guide online updates of At, nudging cali-
bration adaptively during streaming inference.

While this approach cannot fully compensate for rotational
or scale errors, it significantly improves global skeleton
placement with negligible compute cost. Future extensions
could incorporate online refinement, where At is adap-
tively updated at inference using entropy-weighted pelvis
confidence or fused with inertial priors, narrowing the gap
between calibration-lite and full multi-sensor calibration.

E. Training objective

Let H be heatmap logits, P predicted joints, ¥ ground
truth, F per-joint entropy, and W the last-frame voxel grid.
With temperature 7,

L = wmm - KL(G(Y) H softmax(g))
+ Wys - [|[P = Y[R o - [TH(P) = Yy
+ Whone * Loones + Wtemp * ctemp + Wace - Lace

+ Wpek - Relose + Wit - ( - %Ztrilinear(w PJ))
J

+ 7zmol + Rspread~ (])

Here II(-) is differentiable Umeyama alignment [6]. The
RF-density term samples W at P; via trilinear interpolation.
Loss weights wy.y follow curricula. Active perception link:
entropy-weighted terms encourage the model to learn when
additional sensing (e.g., dwell or re-aim) would reduce
uncertainty.



F. Optimization and regularization

Training stability is sensitive due to small datasets and
noisy supervision. We use AdamW [17] with warmup and
cosine annealing restarts [18], plus global-norm gradient
clipping. An EMA of parameters [7] smooths validation. Op-
tuna [8] tunes backbone width, transformer depth, dropout,
learning rate, and loss weights—crucial since performance is
highly sensitive to the balance between KL, coordinate, and
PA-aware supervision.

Checkpoints are chosen by PA-MPJPE [1] and PA-
AP@0.30, not just MSE, to prioritize alignment-consistent
predictions. This combination yields reproducible conver-
gence and generalization under low-resource conditions.

G. Inference

At deployment, inference runs in a streaming setting with
a rolling buffer of T'=5 frames, providing short-horizon
temporal context for the TemporalCorrector without
future leakage. The pipeline for each incoming frame is:

1) Voxelization. Raw Walabot amplitudes are projected

into Cartesian coordinates and rasterized onto the 64 x
48 x 64 grid with percentile normalization.

2) Forward pass. The compact 3D CNN backbone out-
puts volumetric heatmaps; soft-argmax yields sub-
voxel coordinates, while entropy provides joint-wise
uncertainty.

3) Kinematic projection. Joints are rescaled to a height-
normalized skeleton using bone-length priors, ensur-
ing anatomical plausibility.

4) Root stabilization. The pelvis root is stabilized by
blending an EMA of past predictions with a voxel-
derived anchor (centroid and top-K energy modes),
reducing jitter and drift.

5) Temporal residual correction. The causal transformer
refines the current pose with a residual Azyz, scaled
by 0.25, to damp noise while retaining responsiveness.

6) Test-time augmentation (TTA). Small Gaussian per-
turbations to voxel intensities are averaged in pelvis-
centered space for robustness.

7) Background attenuation and gating. We subtract an
exponential moving average (EWMA) background and
gate updates using total RF energy, voxel density at
joint sites, and entropy:
class RFBackground:

def _ _init__ (self, alpha=0.02, shape=(D,H,
W :
s;if.alpha, self.ready = alpha, False
self.bg = np.zeros (shape, np.float32)
def update(self, vg):
self.bg = vg if not self.ready else \
(l-self.alpha)*self.bg + self.
alphaxvg
self.ready = True

def subtract (self, vg):

return np.clip(vg - self.bg, 0, None)

This acts as a lightweight clutter suppressor. Active
perception link: if entropy is high or energy too low,
the system can dwell or re-aim rather than propagate
unstable updates.

Epoch Train MSE Val MSE PA-AP@0.30 PA-MPJPE [m]

01 0.2209 0.2071 0.106 0.617
10 0.3286 0.2156 0.101 0.621
20 0.4337 0.2370 0.126 0.544
25 0.4511 0.2590 0.202 0.492
30 0.4847 0.2891 0.343 0.423
33 0.5179 0.3071 0.460 0.396

TABLE I: Training trajectory for loop 2 (non-optimized).

8) Entropy-aware smoothing. Beyond EMA, we apply
a simple entropy-aware Kalman filter that scales mea-
surement noise:

R = np.eye(3) * (base_var * (1 + entropy))
K=P @ H.T @ np.linalg.inv(H @ P @ H.T + R)
x=x + K@ (z - H @ x)

This adaptively smooths predictions without future
context.

H. Evaluation metrics

Primary: PA-MPJPE and PA-AP@r with r €
{0.10,0.30,0.50} after differentiable Umeyama alignment.
Secondary: pelvis-centered MPJPE, bone-length MAE, and
uncertainty calibration (ECE). Stability: per-joint jerk and
flip-rate. Absolute MPJPE is reported but de-emphasized
due to hardware/sync limits.

Finally, a latency probe records voxelization, forward
pass, and post-processing. On consumer hardware, mean
latency remains interactive, supporting search-and-rescue and
privacy-sensitive monitoring scenarios.

V. RESULTS
A. Primary metrics
We report MPJPE (absolute, pelvis-centered), PA-
MPIJPE [1], AP@{0.10,0.30,0.50,0.75,0.90}, PA-

AP@{0.30,0.50}, and a near-miss AP band at [0.30, 0.35) m.

For the non-optimized loop (loop 2), early stopping at
epoch 33 yielded: Train MSE = 0.5179, Val MSE = 0.3071,
AP@0.30 = 0.061, AP@0.50 = 0.106, AP@0.75 = 0.303,
AP@0.90 = 0.439, PA-AP@0.30 = 0.460, PA-AP@0.50
= 0.742, MPJPE(abs) = 4.022m, MPJPE(centered) =
0.906 m, and PA-MPJPE = 0.396 m.

The optimized loop (loop 1) used PA-AP@0.30 as the
early-stopping key. Its best checkpoint occurred earlier
(epoch 11) with PA-AP@0.30 = 0.808, PA-AP@0.50 =
0.970, PA-MPJPE = 0.188m, MPJPE(abs) = 3.979m,
MPJPE(centered) = 0.796 m, AP@0.30 = 0.101, AP@0.90
= 0.672.

Alignment-sensitive metrics and supplementary AP values
are summarized below:

B. Optimized vs. non-optimized comparison

a) Observation.: PA-aware optimization nearly dou-
bled PA-AP@0.30 (0.808 vs. 0.460) and halved PA-MPJPE
(0.188m vs. 0.396m), validating alignment-first training.
Absolute MPJPE improved less.



Epoch Train MSE Val MSE PA-AP@0.30 PA-MPJPE [m]

01 0.1955 0.2065 0.227 0.524
10 0.2357 0.2320 0.697 0.305
14 0.2544 0.2661 0.828 0.185
15 0.2335 0.2572 0.803 0.182
20 0.2456 0.2608 0.687 0.307
24 0.2472 0.2694 0.813 0.186

TABLE II: Training trajectory for loop 1 (optimized).

PA-AP@0.301
0.460

PA-AP@0.501
0.742

PA-MPJPE]
0.396 m

Loop 2 (epoch 33)

TABLE III: Alignment-sensitive metrics at early stop
(loop 2).

PA (view (center/scale/align) | xFRS:2,0
?

N

Fig. 3: Predicted 3D pose overlayed on RF voxel/point cloud.

C. Ablations

We ablate design choices under identical splits, early
stopping on PA-AP@(.30:

a) Backbone / head /loss.: (1) Full model; (2) Heatmap
— regression (expected instability, no calibrated confidence);
(3) — PA loss (drop in PA metrics); (4) — bone prior (implau-
sible limb lengths).

b) Guidance / robustness.: (5) — RF-density guidance
(more drift in low-SNR); (6) Misleading-energy stress (shuf-
fle/invert maps, test robustness); (7) Occluder bias (false-
attraction rate under metallic clutter); (8) Range/SNR bins
(guidance benefits vs. SNR).

¢) Temporal stability / root anchoring.: (9) — temporal
residual (higher jerk/flip); (10) —root fusion (higher drift);
(11) Root fusion variants (EMA-only, centroid-only, mode-
only, none; compare drift@T, reset-lag, PA-AP@0.30, jerk).

D. Qualitative results

Figure 3 shows predicted skeletons overlayed on RF
voxel clouds, color-coded by error (blue=low, red=high).
Transparency encodes entropy. Torso/limbs remain stable;
residual errors appear at wrists/ankles.

AP@0.10  AP@0.30
Loop 2 (epoch 33) 0.011 0.061

AP@0.50
0.106

AP@0.75
0.303

AP@0.90
0.439

TABLE IV: Supplementary AP metrics (loop 2).

Loop Epoch PA-AP@0.307 PA-AP@0.501 PA-MPJPE [m]}
Optimized (loop 1) 24 0.813 0.970 0.186
Non-optimized (loop 2) 33 0.460 0.742 0.396

TABLE V: Optimized vs. non-optimized: alignment-sensitive
metrics.

Loop Epoch  MPJPE(abs) [m] MPIPE(ctr) [m] AP@0.30 AP@0.90
Optimized (loop 1) 24 3.979 0.835 0.091 0.641
Non-optimized (loop 2) 33 4.022 0.906 0.061 0.439

TABLE VI: Supplementary metrics across loops.

Fig. 4: Collection setup. A subject stands ~2m in front of
the Walabot during testing. RF volumes and RGB snapshots
captured in this configuration are used for pseudo-3D tri-
angulation; model predictions on these scans are shown in
Fig. 3.

VI. DISCUSSION

This work is a proof of concept rather than a mature
deployment. Limitations shaped outcomes but also highlight
opportunities for advancing RF-based active perception.

a) Data and supervision.: Our dataset covers only 30
short scenes, each frame aggregating ~5 Walabot volumes
plus three RGB snapshots for pseudo-3D triangulation of
33 MediaPipe landmarks [11]. Labels were noisy due to
handheld cameras, lack of synchronization, and MediaPipe’s
2D errors [19], constraining absolute accuracy and general-
ization.

b) Sensor limitations.: The Walabot, though inexpen-
sive, was pushed beyond its intended range. Limited angu-
lar/depth resolution and multipath interference hindered joint
tracking beyond 2-3 m or through denser walls. Compared to
mmWave FMCW or UWB arrays, spatial fidelity was much
lower [20], [21].

c) Collection setup.: Fig. 4 illustrates the capture con-
figuration (not true ground truth). Predictions in Fig. 3 show
both the promise and the limits of approximate supervision.



d) Compute constraints.: Consumer-grade hardware
limited batch size, ablation breadth, and hyperparameter
search. Despite Optuna tuning [8], stability relied heavily
on EMA and curricula [7], [16], suggesting richer compute
would enable deeper exploration.

e) Limitations summary.: Performance is bounded by
low-resolution radar, noisy pseudo-3D labels, and limited
data. Absolute MPJPE suffers, so rigid-alignment metrics
(PA-AP@r, PA-MPJPE) better reflect skeletal fidelity. Still,
RF-density guidance improved alignment, and root stabiliza-
tion (EMA+centroid/mode) balanced drift and jitter.

f) Methodological takeaways.: Key lessons for active
perception:

o Volumetric heatmaps with soft-argmax provide inter-
pretable joints and uncertainty estimates.

o A causal temporal corrector stabilized jitter for real-
time streaming [5].

o RF-density guidance anchored predictions to physi-
cally plausible regions.

o Alignment-aware objectives (PA losses, bone priors)
yielded perceptually consistent skeletons despite noisy
global translation.

g) Future directions.: Advancing active RF perception
will require: (1) larger, synchronized datasets with mo-
cap/depth ground truth; (2) higher-resolution mmWave or
UWRB arrays with beamforming [20]; (3) stronger root/global
recovery using GPS/IMU or SMPL models [22]; (4) domain
randomization for diverse wall materials; (5) multi-sensor
fusion (RF+IMU/RGB-D); (6) deployment testing in SAR
or smoke-filled environments [4].

VII. CONCLUSION

We presented a complete, low-cost pipeline for 3D skele-
tal pose estimation through walls using commodity RF
sensing. The system proceeds end-to-end as

RF — voxelize — compact 3D CNN
— 3D heatmaps — soft-argmax
— causal residual corrector — pose.

Our training objective integrates multiple complementary
terms: volumetric KL divergence over heatmaps, entropy-
weighted coordinate regression, PA-aligned supervision (dif-
ferentiable Umeyama) [6], temporal smoothness and acceler-
ation priors, height-scaled bone-length normalization, a soft-
PCK reward annealed over training, and an unsupervised
RF-density guidance term that biases predictions toward
high-energy voxels. Curriculum schedules gradually ramp
the weights of alignment-sensitive and RF-density terms to
stabilize convergence. At inference, the pipeline includes
root stabilization via EMA smoothing and voxel-derived
centroid/mode anchors [7], along with a constant global
translation offset estimated from training bundles to correct
residual calibration bias.

Experiments across 30 pseudo-3D annotated scenes show
that, despite noisy triangulated supervision, the system
achieves competitive alignment-sensitive metrics: a PA-
MPIJPE of 0.188-0.396 m and PA-AP@0.30 up to 0.808

depending on optimization strategy. Notably, explicit early
stopping on PA-AP@(.30 nearly doubled performance com-
pared to generic validation loss, showing the importance
of alignment-aware supervision. We also observed that RF-
density guidance and temporal residual correction substan-
tially reduced jitter and improved plausibility in streaming
settings.

While the dataset and sensor are modest, these results
demonstrate that meaningful 3D pose information can be
extracted from low-cost RF hardware. The system provides a
proof of concept for future RF-based perception in privacy-
preserving monitoring, human-computer interaction, and
search-and-rescue scenarios where cameras are ineffective
or undesirable [4]. Scaling data collection with motion cap-
ture, integrating higher-resolution RF arrays, and incorporat-
ing multi-sensor fusion (e.g., inertial + RF) represent imme-
diate next steps toward deployment-ready systems. Hence,
we report internal, modality-pure baselines and alignment-
first metrics, which are the appropriate comparators for
single-shot RF-only.
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