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Abstract— This paper introduces a deep reinforcement learn-
ing (DRL) framework for estimating and searching for an
invisible gas source using a mobile sensor in turbulent en-
vironments. Source term estimation (STE), which aims to
estimate key properties of the gas source, is challenging due
to environmental uncertainty and sensor noise. Particularly,
balancing exploration and exploitation in DRL-based STE is
difficult, since the agent makes decisions based on both current
and past noisy measurements under turbulence. However, most
existing studies have made limited attempts to address these
challenging problems and are rarely validated in turbulent
or real-world experiments. To address these issues, we pro-
pose a curiosity-driven information-guided learning framework
that accurately estimates and effectively searches for the gas
source in turbulent environments. The proposed method enables
efficient exploration by guiding the agent to actively search
novel regions where informative source information is likely
to exist. Furthermore, the active perception reward function
is proposed to ensure the robust source search. Simulations
under high turbulence and noise demonstrate that the proposed
method outperforms the existing methods in terms of the
success rate and the mean travel distance. Moreover, real-
world experiments confirm the feasibility and robustness of
the proposed framework, highlighting its potential for practical
STE problems.

I. INTRODUCTION

In recent years, numerous incidents of hazardous gas
leakage have occurred, causing serious risks to human health.
In order to minimize potential damage, it is critical to rapidly
identify the exact properties of the gas source. Estimating the
key properties (e.g., source location and release strength)
is generally referred to as source term estimation (STE)
problem. STE problem is inherently challenging, as most
hazardous gas leakage is invisible and strongly influenced
by turbulent atmospheric conditions. Since it is dangerous
for humans to directly identify the gas source, autonomous
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STE strategies using mobile sensors such as UAVs and UGVs
have recently attracted considerable attention [1].

One of the representative strategies for STE is the
information-theoretic approach, which employs Bayesian in-
ference to estimate the source term and leverages information
theory for planning the search [2]–[5]. In this approach, the
mobile sensor determines its next sensing point by selecting
an action that reduces the uncertainty of the estimated source
term the most. This approach is particularly effective in ad-
dressing noisy and sparse sensor measurements in turbulent
environments. However, such methods require a substantial
computational load to calculate the uncertainty for all action
candidates. Therefore, it can impose a significant burden on
the real-time processing capabilities of computing boards.

Utilizing deep reinforcement learning (DRL) approaches
can provide a promising solution for addressing these is-
sues in STE. DRL can learn an optimal search policy by
leveraging neural networks, thereby reducing computational
load and ensuring real-time applicability [6]. Furthermore, by
empirically determining actions from past experiences and
reward feedback, it can guide the agent toward potentially
efficient search paths.

For these reasons, many studies have recently applied
DRL to the STE problem. However, developing a robust
source search policy in turbulent environments with sparse
and highly variable sensor measurements still remains a
significant challenge. Since STE is a partially observable
Markov decision process (POMDP), the decision of the agent
depends not only on the current but also on past sensor mea-
surements. Consequently, effective exploration strategies are
essential to acquire informative measurements, as gathering
unreliable observations due to the turbulence can severely
degrade source estimation and search performance. In this
context, achieving a proper balance between exploration and
exploitation is crucial for DRL-based STE [7].

Nevertheless, most DRL-based STE methods lack effec-
tive strategies to tackle these challenges. Many studies have
primarily focused on rapidly searching for the source [8]–
[11]. But without incorporating a source estimator, these
methods are unable to declare when the source search is
complete and to identify the source location accurately. Un-
like these approaches, PC DQN [12] and MVG-RDDPG [13]
utilize DRL to train the search policy while estimating
the source by using the particle filter. Despite their effec-
tiveness, these methods rely on random exploration, which
can lead the agent into regions that are already explored
or uninformative. Thus, it can result in inefficient search



in turbulent environments. Furthermore, their methods are
trained under ideal conditions with low turbulence, which
limits robustness in real-world scenarios. To overcome these
issues, Singh et al. [14] introduces a recurrent neural network
agent that robustly tracks turbulent gas plumes. Yet, its
performance degrades when sensor signals become sparse,
as reliance on recovering to sensing regions leads to unstable
trajectories. AID-RL [15] introduces information-directed
RL that combines reward-driven exploitation with entropy-
based exploration, but its ε-greedy action selection still
biases the policy toward exploitation, increasing the risk of
local minima. Lee et al. [16] improves the source search ro-
bustness in turbulent environments by designing the Gaussian
mixture model (GMM)-based reward functions. However, it
mainly focuses soley on reward designing without addressing
effective exploration strategy.

Motivated by these issues, we propose a DRL-based
STE framework, which enables robust source estimation and
efficient search even under sparse and highly fluctuating gas
sensor measurements in turbulent environments. Specifically,
we leverage curiosity-driven exploration to actively guide the
agent toward novel regions where informative source infor-
mation is likely to exist. By balancing this with the active
perception reward, the proposed method enables the agent to
rapidly and robustly search for the source, while acquiring
reliable gas measurements. To validate the effectiveness and
robustness of the proposed framework, we perform various
simulations under high turbulence and noisy conditions.
We emphasize that, to the best of our knowledge, DRL-
based STE studies that conducted real-world experiments in
turbulent environments have been rarely reported. To this
end, real-world experiments with CO2 leakage scenarios
are conducted to demonstrate the feasibility of the proposed
method. In this paper, we term our algorithm the curiosity-
driven information-guided soft actor-critic (CIG-SAC). The
main contributions of the proposed method is represented as:

1) We introduce a curiosity-driven exploration framework
for DRL-based STE problem, which enables more
accurate source estimation and efficient source search
in turbulent environments;

2) We present the active perception reward function that
integrates mutual information with particle filter vari-
ance, enhancing the robustness of the source search;
and

3) The proposed method demonstrates robust perfor-
mance compared with existing STE methods through
various turbulent simulations, and its feasibility and
practical applicability are confirmed in real-world ex-
periments.

II. PROBLEM STATEMENT

In this study, a hazardous gas source is located at rs =
[xs, ys]

T using an agent. The source term, which is the pa-
rameter vector to be estimated, is defined as θs =

[
rTs , qs

]T
.

At each time step t, the agent located at rt collects gas
sensor measurements and estimates the source term using
particle filter, based on the predefined gas dispersion model

and sensor model. Then, CIG-SAC is applied as the action-
selection strategy to optimize the search trajectory.

This section describes the gas dispersion model and the
sensor model. Furthermore, it handles the source estimation
method utilizing a particle filter.

A. Gas Dispersion Model

For the gas dispersion model, we use the isotropic plume
model [2]. In this model, the gas particle propagates with
the particle life time τ and the diffusivity D. In addition, the
gas particle diffuses at a wind direction χ and an average
wind speed V . The gas concentration C(rt|θs) acquired at
the sensing position rt at time step t is defined as:

C(rt|θs) =
aqs

|rt − rs|
exp

V (xt − xs) sinχ

2D

· exp −V (yt − ys) cosχ

2D
· exp −|rt − rs|

λ
, (1)

where

λ =

√
Dτ

1 + U2τ
4D

. (2)

B. Gaussian Sensor Model

Since the sensor measurements obtained by the agent
include noise in real-world scenarios, we use the Gaussian
noise model as the sensor model. The sensor measurement
zt at the sensing position rt at time step t is expressed as:

zt = C(rt|θs) + νsensor + νenv, (3)

where νsensor and νenv denote the noise arising from the
sensor measuring process and the noise induced by the wind,
respectively. Both terms are assumed to follow the white
Gaussian noise, as formulated in the following equations:

νsensor ∼ N (0, σ2
sensor), (4)

νenv ∼ N (0, σ2
env). (5)

The standard deviation of the sensor noise, σsensor, is
defined as:

σsensor = β · C(rt|θs), (6)

where β and σenv are the level of sensor noise and the
instability of the wind conditions, respectively. The probabil-
ity distribution of the sensor measurement zt at the sensing
position rt at time step t is defined as:

p(zt|θs) =
1

σT
√
2π

exp− (zt − C(rt|θs))
2σ2

T

. (7)

In this context, the overall standard deviation of the noise
σT is calculated as:

σT =
√
σ2
sensor + σ2

env. (8)

Fig. 1 illustrates examples of the gas dispersion model and
the sensor measurement map with noise.



Fig. 1. (a) Gas dispersion model and (b) sensor measurement with noise.

C. Particle Filter

We utilize a particle filter to estimate the source term, as
it is well-suited for handling the non-linear characteristics
of the source term and remains robust under high levels
of sensor measurement noise. The source term probability
distribution is expressed by Np particles as:

p(θt,s|z1:t) =
Np∑
i=1

witδ(θt,s − θit,s), (9)

where δ(·) represents the Dirac delta function, θit,s is each
particle representing the source term, and wit denotes the
weight of each particle. When the new sensor measurement
zt+1 is collected at time step t+ 1, the particle weights are
calculated with the following equation:

wit+1 = p(zt+1|θit,s) · wit. (10)

where wit+1 indicates the unnormalized weight of each
particle. The likelihood p(zt+1|θit,s) is calculated by using
the predefined gas dispersion model and sensor model from
equations (1) and (7). Then, the normalized weight wit+1 is
given as:

wit+1 =
wit+1∑Np
i=1 w

i
t+1

. (11)

To mitigate the degeneracy problem, in which most par-
ticle weights converge toward zero, a resampling is applied.
Resampling is performed when the effective number of
samples falls below a predefined threshold δ. The effective
number of samples Neff is computed as:

Neff =
1∑Np

i=1(w
i
t)

2
. (12)

Furthermore, the Markov chain Monte Carlo (MCMC)
method [17] is utilized after resampling to improve particle
impoverishment.

III. METHOD

In this section, we introduce a curiosity-driven
information-guided reinforcement learning framework
to achieve robust source search in turbulent environments.
The STE problem is formulated as the belief-based Markov

decision process (belief-MDP), where the state is defined
using particle filter information. State and action utilized
in this study is first introduced, and the curiosity-driven
exploration for STE is explained. Then, the proposed active
perception reward is presented, and the overall learning
framework is outlined.

A. State and Action

1) State: The state is defined as the particle filter informa-
tion and the sensing position. To enhance training stability
and the efficiency of source estimation, GMM clustering is
applied to extract features from the particle filter [13]. The
state in this study is defined as:

st = [Mt,Σt,Πt,mt, rt] , (13)

where Mt denotes the mean of each GMM cluster, Σt

represents the covariance of each GMM cluster, and Πt

is the corresponding weight of each GMM cluster. Also,
mt represents the mean of all particles and rt indicates the
sensing position at the current step.

2) Action: In the STE problem, a continuous action
space is more beneficial than a discrete action space, as it
increases the possibility of the agent obtaining informative
measurements. To enable this, this study adopts a continuous
action at by applying a fixed-length movement with the
heading direction at each step. The next sensing position
is determined by the agent’s selected action, as given below:

rt+1 = rt +

[
cos(at)
sin(at)

]
· k, (14)

where k is the fixed step size.

B. Curiosity-Driven Exploration for Source Term Estimation

Balancing exploration and exploitation is crucial in DRL-
based STE, especially in turbulent environments. To deal
with these issues, we adopt curiosity-driven exploration [18],
which provides intrinsic motivation that encourages the agent
to explore novel but learnable states. As shown in Fig. 2, we
design a curiosity network composed of a feature extractor,
an inverse network, and a forward network, parameterized
by wfeat , winv , and wfwd , repectively.

The feature extractor encodes the current and next states,
st and st+1, into feature representations φ(st) and φ(st+1).
The inverse network predicts the action ât that caused
the transition between consecutive states given φ(st) and
φ(st+1), and is trained with the following loss function:

Linv = MSE(at, ât). (15)

The forward network is designed to predict the next feature
representation φ̂(st+1) from φ(st) and at. The prediction
error between φ(st+1) and φ̂(st+1) is used as the loss of
the forward network:

Lfwd = ∥φ(st+1)− φ̂(st+1)∥22 . (16)

For the STE problem, note that the state is defined as
the belief information extracted by GMM clustering and
the sensing position of the agent. As illustrated in Fig. 3,



Fig. 2. System architecture of CIG-SAC for source term estimation.

Fig. 3. Prediction error between the belief state and the predicted state in
curiosity-driven exploration.

point A represents the belief information (i.e., source infor-
mation), while point B denotes the predicted information
by the forward network. In the early stages of training,
a noticeable gap exists between point A and B, repre-
senting the prediction error (i.e., uncertainty) measured as
|AB| = ∥φ(st+1)− φ̂(st+1)∥22. Rewarding

∣∣AB∣∣ can induce
the agent to visit novel regions, where previously unknown
source information is expected to be obtained. Importantly,
since

∣∣AB∣∣ corresponds to the loss of the forward network,
it tends to decrease as the forward network is trained.
Consequently, it can guide the agent to learn in a way that
gradually reduces this uncertainty. Based on this insight, we
adopt the forward network loss, representing the prediction
error, as the intrinsic reward:

rit = ∥φ(st+1)− φ̂(st+1)∥22 . (17)

The overall optimization objective for the curiosity net-
work is denoted as:

min
wfeat ,winv ,wfwd

Lc = (1− ε)Linv + εLfwd , (18)

where ε balances the two terms.

C. Active Perception Reward Function

In turbulent environments, where gas measurements are
highly variable and sparse, the agent requires an effective
search strategy, as obtaining unreliable measurements can
easily mislead the search process. In this context, we intro-
duce the active perception reward function, which enables
robust source search.

The mutual information is employed as a reward to drive
the policy toward reducing the uncertainty of the estimated
source term distribution, motivated by a study in [16]. The
mutual information is defined as:

I(rt+1) = −
Np∑
i=1

wit logw
i
t

+

zmax∑
ẑt+1=0

p(ẑt+1|θt,s)

 Np∑
i=1

ŵit+1 log ŵ
i
t+1

 ,

(19)

where rt+1 is the sensing position at the next step, ẑt+1

denotes all possible future measurements at the next sensing
position, and ŵit+1 represents the potential particle weight.
Furthermore, to accelerate the source search, we introduce a
distance term between the agent’s position and the estimated
source location, defined as:

dt = − |r̂t,s − rt| , (20)

where r̂t,s denotes the estimated source location.



To enable an efficient balance between the mutual infor-
mation term and the distance term, we introduce an automatic
adjustment method based on the particle filter variance. The
variance of all particles at time step t is calculated as:

Cov(θt,s) =
Np∑
i=1

wit
(
θit,s −mt

) (
θit,s −mt

)T
. (21)

Ultimately, we define the active perception reward function
as:

rt,step = I(rt+1)− tr(Cov(θt,s))
−1
dt. (22)

A high particle filter variance indicates high uncertainty
in the estimated source term, so the mutual information
term dominates and encourages exploration to reduce this
uncertainty. As the variance decreases, the distance term
becomes more influential, guiding the agent to exploit its
knowledge and move rapidly to the estimated source.

Finally, the total extrinsic reward function is defined as:

ret =


+10, find the source,

I(rt+1)− tr(Cov(θt,s))
−1
dt, for each step,

−5, outside boundary.
(23)

D. Learning Framework for CIG-SAC
To train a robust source search policy while promoting ac-

tive exploration under uncertainty, we propose the learning-
based framework that integrates the soft actor-critic (SAC)
method [19] with curiosity-driven exploration for STE.

We design the replay buffer D that stores tuples of
agent-environment interaction in the form (st, at, r

e
t , st+1).

It facilitates diverse experiences and efficient sample reuse
by updating the policy with randomly sampled mini-batches.
As shown in Fig. 2, the extrinsic active perception reward
ret is sampled from the replay buffer, whereas the intrinsic
reward rit is updated by the curiosity network. This method
prevents intrinsic reward values that were high in previously
uncertain regions from being repeatedly reused, thereby
avoiding bias toward excessive exploration. The total reward
is then updated as:

rtotal
t = ret + ηrit, (24)

where η is the scaling factor between the extrinsic and
intrinsic rewards.

The target Q-network is utilized to stabilize training by
offering a temporally smoothed estimate of future rewards.
The target Q-value is computed as:
yt = rtotal

t

+ γ Eat+1∼πψ
[
Qϕ̄(st+1, at+1)− α log πψ(at+1|st+1)

]
,

(25)
where ϕ̄ denotes the parameter of the target Q-network,
ψ represents the parameter of the actor network, and α
is the temperature parameter which balances the entropy
term against the reward. The critic network is trained by
minimizing the following loss function:

Lcritic(ϕ) = E(st,at)∼D

[
(Qϕ(st, at)− yt)

2
]
. (26)

To optimize the policy, the actor network is trained by
minimizing the following equation:

Lactor(ψ) = Est∼D, at∼πψ [α log πψ(at|st)−Qϕ(st, at)] .
(27)

Finally, we adopt automatic entropy tuning to dynamically
adjust the temperature parameter α, which balances the trade-
off between exploration and exploitation for the expected
reward maximization. The objective function for tuning α
can be written as:

Lα = Eat∼πψ
[
−α log πψ(at|st) + H̃

]
, (28)

where H̃ is the target entropy which determines the desired
level of policy stochasticity. The overall learning process of
the proposed framework is shown in Fig. 2.

IV. NUMERICAL SIMULATION

A. Simulation Environment

The numerical simulation is conducted in two different
environments by adjusting the parameters of gas, wind, and
noise. Both environment 1 and 2 are designed with high
turbulence, while environment 2 includes higher environ-
mental and sensor noise as shown in Table I. These settings
are designed to reflect challenging real-world scenarios and
to train a robust policy under such conditions. The agent
moves to the next sensing position with a fixed step size
of 2m within a 60m × 60m search area. The simulation
terminates if the agent exceeds 300 steps or the standard
deviation of the particle filter is below 0.1. At the end of each
simulation, the source search is considered successful if the
distance between the estimated source and the true source
is within 1m. The agent is trained with 60,000 number of
training episodes, and the hyperparameters for training are
summarized in Table II. Moreover, the locations of both the
source and the mobile agent are randomly initialized in each
training episode, and the parameters in Table I are randomly
selected at the beginning of each episode.

TABLE I
PARAMETER VALUES OF ENVIRONMENTS 1 AND 2

Symbol Environment 1 Environment 2 Unit
qs U(500, 3000) U(500, 3000) mg/s
τ U(200, 1500) U(200, 1500) s
D U(2, 15) U(2, 15) m2/s
V U(0, 5) U(0, 5) m/s
χ U(0, 360) U(0, 360) deg
σenv 0.4 0.5 mg/s
β 0.25 0.4 -

B. Ablation Study

The ablation study is conducted using two key metrics:
success rate (SR) and mean travel distance (MTD). SR de-
notes the percentage of episodes where the agent successfully
estimates the source location, whereas MTD represents the
average distance the agent travels to achieve a successful
source estimation. For each test, the parameters listed in



TABLE II
HYPERPARAMETER LISTS AND CORRESPONDING VALUES

Hyperparameter Value
The size of first fully connected layer 256
The size of second fully connected layer 64
Learning rate (actor, critic network) 0.0003
Learning rate (curiosity network) 0.0001
Replay buffer size 100,000
Minibatch size 256
Curiosity loss weighting factor (ε) 0.2
Discount factor (γ) 0.99
Soft update coefficient (τ ) 0.005
Intrinsic reward weight (η) 2.5
Optimizer Adam

Table 6 are randomly initialized, and 1,000 random scenarios
are executed to ensure statistical reliability.

First, ablation analysis is conducted in both environments
by selectively removing different components in CIG-SAC.
Particularly, to verify the contributions of the curiosity-driven
exploration and the active perception reward, SAC is fixed
as the baseline and evaluated with each component removed.
As shown in Table III, in SAC without the active perception
reward and curiosity-driven exploration, the agent receives a
positive reward only when it successfully finds the source.
This corresponds to a typical sparse reward problem, which
provides insufficient guidance for effective source term esti-
mation. Consequently, it exhibits the worst performance. IG-
SAC with the active perception reward, and C-SAC, which
employs curiosity-driven exploration, both achieve improved
performance compared to SAC. In IG-SAC, the proposed
active perception reward facilitates robust policy learning by
guiding the agent to reduce the uncertainty of the estimated
source term distribution. However, relying solely on this
reward can cause the policy to overlook informative states.
In contrast, CIG-SAC achieves the most robust performance
by encouraging the agent to explore novel regions where
informative source term is likely to exist, while ensuring
robust policy learning in turbulent environments.

Additionally, we compare our method with both
information-theoretic and DRL-based approaches. The
information-theoretic methods include infotaxis [2] and en-
trotaxis [4], whereas the DRL-based methods include PC-
DQN [12], MVG-RDDPG [13], AID-RL [15], and Lee
et al. [16]. Infotaxis and entrotaxis tend to exhibit higher
MTD than DRL-based methods in both environments, as
their limited action candidates can cause the agent to miss
opportunities to reach optimal sampling positions. PC-DQN
achieves more efficient MTD compared to infotaxis and
entrotaxis, but still exhibits low SR. During training, it
relies on random exploration, which causes the agent to
miss informative states. Moreover, without utilizing rewards
directly related to source information in this approach, it
can result in suboptimal policy learning. MVG-RDDPG
incorporates a gated recurrent unit (GRU) memory network
to better exploit past measurements, achieving higher SR
and MTD than PC-DQN. However, it still relies on ran-
dom exploration and a concentration-based reward that is

TABLE III
PERFORMANCE EVALUATION OF SAC-BASED METHODS

Method
Environment 1 Environment 2

SR (%) MTD (m) SR (%) MTD (m)
SAC 86.0 94.1 84.4 98.7
IG-SAC 93.0 84.4 90.2 92.6
C-SAC 91.8 87.8 90.3 94.8
CIG-SAC 98.3 80.2 95.0 86.2

TABLE IV
PERFORMANCE COMPARISON WITH EXISTING METHODS

Method
Environment 1 Environment 2

SR (%) MTD (m) SR (%) MTD (m)
Infotaxis [2] 87.6 155.6 83.0 169.0
Entrotaxis [4] 85.4 142.3 82.7 149.2
PC-DQN [12] 82.3 100.5 78.5 112.4
MVG-RDDPG [13] 90.6 91.8 84.0 98.4
AID-RL [15] 73.9 120.4 63.4 138.2
Lee et al. [16] 91.6 95.8 86.0 100.4
CIG-SAC 98.3 80.2 95.0 86.2

vulnerable to turbulence, resulting in lower performance
than CIG-SAC. On the other hand, AID-RL selects actions
with probability 1 − ε by maximizing the Q-function, and
with probability ε by reducing belief uncertainty the most.
Thus, since this strategy is biased toward exploitation, its
performance degrades in turbulent environments, as shown
in Table IV. Finally, Lee et al. introduces GMM-based
reward functions that improve robustness compared with
other algorithms; however, the lack of effective exploration
still limits its overall performance.

Fig. 4. Setup for the experiments.

V. REAL-WORLD EXPERIMENTS

In the real-world experiments, a CO2 gas tank is used to
generate gas dispersion. The AgileX Limo UGV, equipped
with a SEN15112 gas sensor, is utilized as the mobile sensing
platform. The NVIDIA Jetson Xavier NX is employed for
onboard computation, while FAST-LIO2 [20] and a Livox
Mid-360 LiDAR are used for mobile sensor localization
and environmental perception, respectively. Each algorithm is
tested 10 times in an 8m× 8m indoor gym, and the mobile
sensor is set to move 0.5m at each step. To ensure that
CO2 is sufficiently dispersed and reaches a steady state, the
gas is released for 4 minutes before each experiment begins.



Fig. 5. Sample result of CIG-SAC for real experiments.

TABLE V
RESULTS OF REAL-WORLD EXPERIMENTS

Method SR (%) Step Number CT (ms)
Infotaxis 70 49.3 420.3
MVG-RDDPG 80 34.8 80.4
CIG-SAC 100 26.4 82.6

Due to the recovery time of the gas sensor, measurements
are collected 5 seconds after the mobile sensor arrives at
each sensing position. Furthermore, to introduce external
airflow, the indoor gym windows are kept open during the
experiments. The experiment setup is shown in Fig. 4.

In the real-world experiments, we compare infotaxis,
MVG-RDDPG, and CIG-SAC. Unlike in the simulations, we
additionally evaluate the averaged computation time for one
step decision making (CT) as a performance metric. Since in-
fotaxis must compute the uncertainty for all action candidates
by considering all possible future measurements, it shows the
highest CT, which is inefficient for real-time applications.
In contrast, both MVG-RDDPG and CIG-SAC achieve low
CT by learning an optimal policy through DRL. However,
MVG-RDDPG, which relies on random exploration during
training, exhibits inefficient step number and low success
rate in turbulent environments. In contrast, since CIG-SAC
effectively balances curiosity-driven exploration with the
active perception reward, it achieves robust performance even
in real-world experiments. As shown in Fig. 5, despite sparse
measurements up to t = 12, the mobile sensor guided by
CIG-SAC follows an efficient trajectory toward the source.

VI. CONCLUSIONS AND FUTURE WORK

In this study, we proposed a curiosity-driven information-
guided reinforcement learning framework for robust source
search in turbulent environments. The proposed method

effectively guides the agent to explore novel regions where
informative source information is likely to be obtained,
while the active perception reward enables robust and effi-
cient source search. Through extensive turbulent simulations
and real-world experiments, CIG-SAC demonstrated superior
performance compared to existing approaches, highlighting
its potential applicability to practical STE problems. For
future work, we plan to extend the framework to multi-agent
systems to further enhance source search performance.
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