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Abstract—This paper presents Semantic-GSL, the first
framework to integrate semantic information into the esti-
mation process for indoor gas source localization (GSL) by
leveraging vision-language model (VLM). It addresses a fun-
damental limitation of conventional GSL approaches, which
ignore the crucial real-world prior that emission sources are
typically co-located with relevant objects. We employ a two-
stage VLM framework to extract semantic information about
high-probability source objects from general environmental
descriptions without requiring predefined object names. This
semantic information is then fused into a semantic-informed
particle filter (SIPF), which redistributes particles toward se-
mantically relevant regions, resulting in faster convergence and
improved estimation accuracy. Simulation results in complex
indoor environments confirm that Semantic-GSL significantly
outperforms existing methods.

I. INTRODUCTION

As hazardous gas leaks increasingly threaten ecosystems
and human lives [1], gas source localization (GSL) using
mobile robots has become a critical task to estimate the
source location and release rate [2]. In complex indoor en-
vironments, conventional gas-sensor-only GSL methods [3],
[4] typically combine Bayesian inference for source pa-
rameter (e.g., source locaiton, release rate) estimation with
information-theoretic search strategies, but they are often
inefficient due to noisy gas measurements and complex
airflow-driven gas dispersion.

To overcome this limitation of relying solely on gas
measurement, several approaches integrate onboard cameras
with object detection models. These models provide the
semantic information about potential source objects from a
predefined object set and heuristically guide the mobile robot
toward them once a certain gas measurement threshold is
exceeded [5], [6]. However, by treating detected objects as
deterministic search cues, these methods fail to disambiguate
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the true source when multiple objects are present, leading to
inefficient search and poor estimation accuracy.

Motivated by these limitations, we propose Semantic-GSL,
the first semantically informed GSL framework: leveraging a
two-stage vision-language model (VLM) to extract semantic
information (i.e., locations and relevance scores of source-
related objects) from general environmental descriptions and
using this semantic information within a semantic-informed
particle filter (SIPF) to guide particle distribution to seman-
tically informed areas.

The main contributions of this paper are summarized as:

1) We propose the two-stage VLM framework that ex-
tracts the semantic information by detecting objects
with a high probability of emitting gas using envi-
ronment descriptions without requiring specific object
names (e.g., objects that can leak or store gas).

2) We introduce SIPF, which incorporates semantic in-
formation as an informative prior by redistributing
particles toward semantically relevant objects, leading
to more robust source estimation and improved search
efficiency.

3) We validate the effectiveness of the Semantic-GSL
through simulations in two realistic indoor environ-
ments with different layouts and object settings.

II. SEMANTIC-GSL FRAEMWORK

For robust GSL in the indoor environment, it is essential to
incorporate semantic information into the source parameter
estimation, enabling fast and robust estimation and efficient
search. In this paper, a hazardous gas is assumed to be
released at the location ry = [z4,ys]7 with a release rate
Qs. At each time step k, the mobile robot at location 7y
collects a gas measurement z; and images using its on-
board gas sensor and camera. The source parameter set
0 = [rT, Q)" is estimated using the proposed SIPF, which
approximates the posterior distribution p(6|z1.,) with a
particle set {0, w¢ }~ ;. Semantic information from the two-
stage VLM framework is used to construct a semantically
informative prior, biasing particles toward source-relevant
objects before updating their weights based on the gas
measurement likelihood. Finally, a dual-mode information-
theoretic search strategy [7] selects the next locaiton 74 ;.
The overall structure of the Semantic-GSL can be observed
in Fig. 1.

A. Two-Stage VLM Framework

To extract the semantic information about potential gas
leak objects, we design a two-stage VLM framework that
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only uses the image and a general environmental text prompt,
as shown in Fig. 1(a). At each time step k, after the mobile
agent obtains the gas measurement z; and image, the first
stage processes it with Grounding DINO [8]. It identifies
all potentially relevant objects from the given environmental
descriptive text prompt (e.g., “objects that can leak or store
gas”). This yields a set of G, candidates that is often large
and may include false positives or objects only loosely
related to the prompt.

To filter and rank this set of GG, candidates, the second
stage employs CLIP [9] for semantic refinement. For each
candidate g € {1,...,G}}, the corresponding image patch
is compared against the text prompt to compute their se-
mantic similarity score sq, € [0, 1]. This contrastive scoring
enables pruning of irrelevant objects by applying a similarity
threshold, 7, retaining only those with s, > 7, (set to 0.6
in our framework) The resulting refined set of Dy high-
confidence objects (D < Gy) constitutes the semantic
information. Each object d is then represented by a semantic
vector S, that combines its bounding box center location
cg € R? and its semantic similarity score sq, :

Sa, =[] .sa )" €R, dpe{l,....Dy}, (D

B. Semantic-Informed Particle Filter

1) Semantically Informed Prediction: Since the gas
source is assumed static, the prediciton step simply prop-
agates each particle as ¢} , <« 6i forming the prior
p(Ok|z1.5—1) with the particle set {0}, wi ,}. To enrich
this prior with semantic information {Sg, }i * 1, we apply
an independence Metropolis-Hastings (MH) move to each
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Overview of the Semantic-GSL framework.

particle. Each particle first samples a candidate object of,
from the normalized semantic object distribution:

S
poi(di) = —p—. dp€{1,....Dp}. ()
deZI Sdk

The proposal state é,i is then drawn from a Gaussian distri-
bution centered at the selected object location Coi !

i ~ Ney,021), (3)

where o, controls the spread of the proposal and I is
the identity matrix. The proposal is accepted with the MH
acception probability a:

a(&i éz) =min{ 1, e ——”é;“ — Ol 4
k» Yk) — , €Xp 20_2 ) ()
P

where o, regulates sensitivity to the move distance. Accepted
proposals replace the current particles, redistributing the prior
particle set toward semantically relevant regions before the
weight update step, as illustrated in Fig. 1(b).

2) Farticle Weight Update: For every particle ¢ €
{1,..., N}, the particle weight w!_, is updated using the
gas measurement zj as:

@}, = p(ak|6)) - wiy, ®)

where p(zj|0%) denotes the likelihood of the gas measure-
ment 2. To mitigate particle degeneracy, we apply sys-
tematic resampling [12] whenever the effective sample size
falls below a threshold. With updated particle set {6, wi },
the dual-mode information-theoretic search strategy [7] de-
termines the next location r,4; for the mobile robot, as
illustrated in Fig. 1(c).



TABLE I
SIMULATION RESULTS IN ENVIRONMENT 1 AND ENVIRONMENT 2

Env Method Success Rate (%)  Search Time  Travel Distance (m)  Estimation Error (m)  Travel Time [s]
Dual-mode planner 86 47.73 76.20 247 301.71
1 Mode change 85 41.01 68.77 2.58 286.92
Grounding DINO + SIPF 33 43.11 70.90 1.70 292.38
Semantic-GSL (Ours) 90 38.41 64.78 0.94 250.83
Dual-mode planner 75 51.32 77.13 1.98 359.76
9 Mode change 61 45.30 70.88 2.33 321.69
Semantic-GSL (Only Grounding DINO) 63 46.87 72.20 1.40 391.77
Semantic-GSL (Ours) 87 38.24 62.08 1.34 257.80

O Gas concentration ®Particles of PF M Initial position ~ Estimated source location

M Detected object === Dual-mode planner === Mode change === Semantic-GSL (Ours)

Fig. 2. (a), (b), and (c) show the mobile robot path and the gas
measurement locations for the dual-mode, mode change, and Semantic-GSL
in environment 1. Each case completed the search in timestep k& = 49,
k = 43, and k = 25. The total path is shown in (d).

ITI. SIMULATION RESULTS

The proposed Semantic-GSL is compared with three base-
lines: the dual-mode planner [7], which relies solely on
gas measurements; the mode-change strategy, which uses
semantic information only for search by guiding the robot
toward detected objects once a gas threshold is exceeded [5];
and a variant using Grounding DINO + SIPF to evaluate
the benefit of the two-stage VLM. All methods employ
the dual-mode planner for trajectory generation, and 100
Monte Carlo simulations are conducted in two distinct indoor
environments. Table I summarizes the results, and detailed
performance comparisons are shown in Fig. 2 and Fig. 3.

The largest performance gap appears in estimation error,
clearly separating methods that use SIPF from those that
do not. This confirms that a semantic information-guided
redistribution of particles effectively serves as an informative
prior, concentrating particles near likely source objects and
improving estimation accuracy.

However, the relatively long travel times and lower success
rates of Grounding DINO + SIPF highlight the importance
of reliable semantic information. Without the refinement
stage, many irrelevant objects are detected, producing nearly
uniform priors that misguide the search.

Similar trends are observed with the mode-change method.

Estimated source location

O Gas concentration ®Particles of PF M Initial position
M Detected object === Dual-mode planner w=s Mode change === Semantic-GSL (Ours)

Fig. 3. (a), (b), and (c) show the mobile robot path and the gas
measurement locations for the dual-mode, mode change, and Semantic-GSL
in environment 2. Each case completed the search in timestep £ = 36,
k = 46, k£ = 31. The total path is shown in (d).

Although it avoids irrelevant detections by using a predefined
object set by using the two-stage VLM, its heuristic search
strategy toward detected objects causes frequent detours to
non-source objects whenever gas concentration is below the
threshold, leading to inefficient exploration.

Finally, the dual-mode planner records the longest travel
distance and time due to its lack of prior knowledge, but
achieves relatively high success rates, indicating that poor or
misleading semantic information can be more harmful than
having none.

Overall, Semantic-GSL achieves the best results across
all metrics, demonstrating that combining a two-stage VLM
with SIPF leads to faster, more accurate, and robust GSL.

IV. CONCLUSION

This work introduced Semantic-GSL, the first semantically
informed framework for STE that integrates a two-stage
VLM with a SIPF. Extracting semantic information from the
two-stage VLM and by guiding SIPF with an informative,
semantics-driven prior, the proposed Semantic-GSL achieves
fast and robust GSL. Simulation results also verify that
Semantic-GSL consistently achieves the best performance
across all evaluation metrics. Future work will focus on real-
world deployment and extending evaluation to more diverse
and dynamic environments.
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