
rt-RISeg: Real-Time Model-Free Robot Interactive Segmentation
for Active Instance-Level Object Understanding

Howard H. Qian, Yiting Chen, Gaotian Wang, Podshara Chanrungmaneekul, Kaiyu Hang

Abstract— Successful execution of dexterous robotic manip-
ulation tasks in new environments, such as grasping, depends
on the ability to proficiently segment unseen objects from
the background and other objects. Previous works in unseen
object instance segmentation (UOIS) train models on large-
scale datasets, which often leads to overfitting on static visual
features. This dependency results in poor generalization per-
formance when confronted with out-of-distribution scenarios.
To address this limitation, we rethink the task of UOIS
based on the principle that vision is inherently interactive and
occurs over time. We propose a novel real-time interactive
perception framework, rt-RISeg, that continuously segments
unseen objects by robot interactions and analysis of a designed
body frame-invariant feature (BFIF). We demonstrate that the
relative rotational and linear velocities of randomly sampled
body frames, resulting from selected robot interactions, can
be used to identify objects without any learned segmentation
model. This fully self-contained segmentation pipeline generates
and updates object segmentation masks throughout each robot
interaction without the need to wait for an action to finish. We
showcase the effectiveness of our proposed interactive percep-
tion method by achieving an average object segmentation ac-
curacy rate 27.5% greater than state-of-the-art UOIS methods.
Furthermore, although rt-RISeg is a standalone framework, we
show that the autonomously generated segmentation masks can
be used as prompts to vision foundation models for significantly
improved performance.

I. INTRODUCTION

A robot’s ability to segment unseen objects in new envi-
ronments is essential to scene understanding and successful
execution of downstream tasks, such as dexterous manipula-
tion. Therefore, robust unseen object instance segmentation
(UOIS) is critical for any robotic system aiming to perform
real-world tasks [1]–[5].

State-of-the-art UOIS methods train computationally ex-
pensive deep neural networks by using large datasets to
extract latent space feature representations. However, under-
and over-segmentation remains a challenge for these learned
models in out-of-distribution (OOD) scenarios, such as
heavily cluttered environments [4], [6]. For these methods,
segmentation is performed on static images and is only
considered a pixel grouping problem in the 2-dimensional
image space. However, objects physically exist in the 3-
dimensional world and have unique properties when under
manipulation, such as relative rigid-body motions. Interactive
perception utilizes this insight and approaches UOIS through
robot manipulation over continuous time rather than at a
single static moment [7]. These robot-object interactions
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Fig. 1: Interactive segmentation of a cluttered scene through
minimally disruptive actions with comparisons to state-of-the-art
learned static segmentation models. [A] Real-time BFIF grouping
and object segmentation throughout a robot interaction. The orange
arrow indicates the robot’s action direction. Frames are sampled
initially and grouped once scene motions are detected. Only a small
amount of rigid body motion is needed for accurate segmentation,
which preserves the initial task formation. Object segmentation is
achieved in real time. [B] rt-RISeg segmentation resulting from
robot interactions and [C] rt-RISeg autonomously prompting Seg-
ment Anything Model. Static segmentation models [D] Segment
Anything Model (SAM) and [E] Mean Shift Mask Transformer
(MSMFormer).

should aim to be minimally disruptive to avoid breaking
the initial task formation of the scene [1]. For example,
if the robot’s task is to place a coffee mug into a cabinet,
initial interactive segmentation of the coffee mug should be
achieved with as little physical disruption as possible to avoid
accidentally knocking over and breaking the mug.

Central to rt-RISeg is the designed body frame-invariant
feature (BFIF) [1], which uses the insight that two body
frames rigidly attached to the same moving object will have
the same spatial twist observed from any fixed world frame,
no matter their actual motions [8]. Extending this principle
to multiple objects allows for robust object differentiation,
even with slight differences in movement. Since this feature
is free of learning, there is minimal lag time between rigid
body motions and object identification. Moreover, unlike
previous frameworks that approach interactive perception
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Fig. 2: A visual representation of BFIFs, where the different
motions of body frames attached to the same rigid body are the
same when transformed into a fixed space frame. Transparent
objects represent the initial positions, and solid objects represent the
subsequent positions due to some motions. Sampled body frames
{a1}, {a2}, {b1} and {b2} lie on the initial configurations of their
respective objects and space frame {s} is arbitrarily chosen. The
translation of body frames resulting from the rigid body motions
are represented as the blue linear velocity vectors υx. Although
υ{a1} ̸= υ{a2} and υ{b1} ̸= υ{b2}, the transformation to the fixed
space frame results in the same linear velocity vector υx

{s} for
each body frame on the same rigid object x but different linear
velocity vectors for different rigid objects. The outlined pepper
shape imagines the green object to be infinitely large, which shows
that different motions of different body frames transformed into one
fixed space frame will always be equal.

through “observe, interact, observe”, we support a shift in
paradigm towards “observe while interacting” [1], [9]. In
addition to more accurate object segmentation, this shift,
along with the BFIF, provides an opportunity for immediate
downstream task planning, since objects can be segmented
in real time throughout robot interactions.

We build on this core BFIF insight and propose rt-RISeg,
a lightweight, model-free interactive perception framework
that robustly segments objects in real time while main-
taining initial task formation through minimally disruptive
interactions (see Fig. 1). rt-RISeg leverages BFIFs to derive
object-level understanding without any learning, and BFIF-
based object segmentation occurs concurrently with robot
scene interactions. Furthermore, the resulting instance-level
object understanding can be used to prompt vision foundation
models, such as Segment Anything Model (SAM) [10], to
generate near perfect refined unseen object instance segmen-
tation masks (as shown in Fig. 1-C).

II. RELATED WORK

A. Unseen Object Instance Segmentation

Unseen object instance segmentation is the task of seg-
menting every object instance within a scene without any
pre-existing object-specific knowledge [4]. In early UOIS
work, low-level image features, such as edges, convexity,
and contours, were examined for object identification [11]–
[15]. However, because these methods lack an object-level
understanding and analyze each characteristic of an image,
scenes are often over-segmented. Recently, deep neural net-
works have been trained on large-scale datasets to produce
learned models that drastically improve segmentation perfor-

mance [4], [6], [10], [16]–[18]. Despite these improvements,
such computationally intensive methods still struggle to
generalize to OOD scenarios, often resulting in segmentation
inaccuracy due to the challenges of bridging the sim-to-real
gap and dataset biases [10], [19], [20]. Since both low-level
and learning-based methods propose to segment objects from
static images, their performance is limited by a lack of real-
world object-level understanding. Therefore, we propose a
model-free interactive perception framework that drastically
outperforms these state-of-the-art UOIS methods through
autonomous robot interactions and analysis of rigid body
motions for physical understanding.

B. Motion-Based Object Perception

Motion-based segmentation methods approach object seg-
mentation from an active lens, using scene changes to
segment objects [7], [21]. Early work utilized statistical and
factorization methods, which either required prior knowledge
or were computationally expensive [22]–[26]. Multi-view
segmentation methods leverage multiple camera angles to
capture images and discern consistencies for more accurate
object detection [27], [28]. However, like static segmentation
models, these methods struggle with challenges associated
with a lack of intuition about the physical rigid body
properties of objects in the real world [7]. The proposed
rt-RISeg method addresses these challenges by introducing
a lightweight framework that analyzes small object motions
for object-level real-world understanding and segmentation.

C. Interactive Perception

Interactive perception for UOIS is the practice where a
robot physically interacts with its environment to segment
objects [1]. Recent work used robot actions to singulate
objects for accurate segmentation and back propagation [29].
However, this approach breaks the initial task formation and
is not viable for many meaningful dexterous manipulation
tasks where objects may be fragile or the general environ-
ment state needs to be preserved. RISeg was introduced to
correct segmentation inaccuracies of existing UOIS mod-
els [1]. However, this framework requires base segmentation
and uncertainty masks from a learned model to analyze
pairs of images captured before and after each interaction.
Our proposed rt-RISeg is a model-free, real-time interactive
perception framework that continuously segments objects
through minimally disruptive interactions, preserving task
formation. Since the lightweight framework does not utilize a
learned model for base segmentation masks, we demonstrate
that rigid body motions of interacted objects can be directly
used to autonomously segment unseen objects and produce
object-level understanding without external guidance.

III. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we will first define the designed body
frame-invariant feature central to the rt-RISeg object iden-
tification and segmentation pipeline. Then, we will formally
define the interactive perception problem and introduce our
proposed method.



A. Body Frame-Invariant Feature

The proposed rt-RISeg interactive perception framework
utilizes a designed body frame-invariant feature (BFIF) to
analyze rigid body motions and differentiate objects from
one another for UOIS. In RISeg, we proposed this body
frame-invariant feature (BFIF), which is inspired by spatial
twists of body frames attached to moving rigid bodies. The
central idea is that the twists of different moving body frames
attached to the same rigid body expressed in a fixed space
frame will have the same spatial twist, regardless of their
absolute motions [8].

Given a rigid body that experiences some motion in space,
the translation and rotation of an attached body frame {b}
can be represented as a twist Vb, which is defined as

Vb = [ωb, υb]
⊺ ∈ R6 (1)

where angular velocity vector ωb and linear velocity vector
υb are represented in the {b} frame. However, since the
instantaneous body twists of multiple body frames attached
to the same moving rigid body will be different, we transform
each body twist into a spatial twist Vs = [ωs, υs]

⊺ ∈ R6,
represented in a common fixed space frame {s}.

For moving body frame {b} and fixed space frame {s}, let
Tsb be the transformation matrix from {s} to {b} and Ṫsb be
the time derivative of Tsb. For body twist Vb, the equivalent
spatial twist Vs is derived by

ṪsbT
−1
sb =

[
[ωs] υs
0 0

]
= [Vs] (2)

where [ωs]3×3 is the skew-symmetric representation of ωs.
Therefore, spatial twist can be calculated for each body
frame.

Fig. 2 illustrates the intuition behind spatial twist that if we
imagine a rigid body to be infinitely large, the instantaneous
linear velocity υs (and angular velocity ωs) of the space
frame {s} will be equal for all body frames {b} on the same
rigid body [8]. The Body Frame-Invariant Feature (BFIF),
also denoted by Vs, represents the concept of spatial twist.

B. Problem Formulation

The interactive perception approach to UOIS attempts
to segment unseen objects in an environment through au-
tonomous robot interactions over time. As previously men-
tioned, rt-RISeg proposes a paradigm shift in interactive
perception from “observe, interact, observe” to “observe
while interacting”.

To formalize this, let the observation data It ∈
[0, 255]H×W×3 × RH×W

+ be an RGB-D image of the given
scene at time step t, where t = 0, 1, 2, . . ., is the discrete time
of the system. Furthermore, let θt ∈ Rn be the joint angles
at time step t of a robot with n joints. We aim to segment
each scene by observing object motions throughout robot
interactions. Let ai ∈ SE(3) be a robot action, where i is the
discrete interaction step of the system. With each new image
It and robot joint angles θt produced during the execution of
ai, we produce the segmentation mask Lt ∈ ZH×W

+ , where

Algorithm 1 rt-RISeg
Input: none
Output: segmentation mask, Lt

1: t, i← 0, 0
2: θt, It ← GETCURRROBOT(t), GETCURRIMAGE(t)
3: Lt ← 0H×W

4: while ai ← FINDACTION(Lt, It) not null do ▷ Alg. 2
5: while INTERACT(ai) do ▷ real-time segmentation
6: t← t+ 1
7: θt, It ← GETCURRROBOT(t), GETCURRIMAGE(t)
8: Lt ← SEGMENTOBJS(It−1, It, θt−1, θt, Lt−1) ▷ Alg. 3
9: i← i+ 1

10: L∗
t ← Lt ▷ *intermediate result*

11: return Lt

the object ID given by L
(i,j)
t ∈ Lt corresponds to the pixel

(i, j) in the image It. A value L
(i,j)
t = 0 segments the pixel

(i, j) in the image It as part of the background. Any integer
value L

(i,j)
t > 0 indicates that the pixel (i, j) belongs to an

object with the unique object ID L
(i,j)
t .

In Alg. 1, we algorithmically describe the rt-RISeg system
in which objects are actively segmented while the robot
interacts with the environment. After a robot action ai is
identified by FINDACTION(·), the segmentation mask Lt is
continuously updated via BFIF analysis so long as action ai
is still being executed by INTERACT(·), as shown in lines
5-8. After action ai is completed, Lt is stored in L∗

t as an
intermediate result used only for evaluation purposes. Once
the stop condition ai = null is met, the segmentation mask
Lt is returned, which represents the final object segmentation
of the scene’s end configuration after all interactions.

IV. ROBOT INTERACTIVE OBJECT SEGMENTATION

In this section, we will first describe how robot actions
are heuristically selected using the segmentation mask and
depth image at the current time step. Then, we will describe
how objects are segmented throughout each interaction via
optical flow-based BFIF grouping.

A. Action Selection

In Alg. 2, we detail an action selection algorithm with two
goals. First, we select actions such that moved objects do
not share the same motion, which ensures effective object
differentiation through BFIF analysis. Second, we select
actions that minimally disrupt the environment so as to not
jeopardize the scene’s initial task formation. We assume that
unseen objects lie on a flat tabletop.

In line 1 of Alg. 2, given the current RGB-D image
of the scene It, GETOBJSABOVETABLE(·) uses the depth
channel of It and performs random sample consensus
(RANSAC) [30] for plane fitting to generate a binary mask
objMask ∈ {0, 1}H×W , where objMask(i,j) = 1 indicates
that pixel (i, j) belongs to an object on the tabletop, while
objMask(i,j) = 0 indicates that it does not. Then, the
current system’s segmentation mask Lt is binarized and
defined as binL ∈ {0, 1}H×W , where

binL(i,j) =

{
1, L

(i,j)
t > 0

0, L
(i,j)
t = 0

(3)



Algorithm 2 FindAction
Input: Lt, It
Output: ai
1: objMask ← GETOBJSABOVETABLE(It)
2: binL← BINARIZEMASK(Lt)
3: objsToSegment← objMask − binL
4: if objsToSegment == 0H×W then
5: return null
6: centers, clusterPoints← KMEANS(objsToSegment)
7: boundaryPoints← BOUNDARY(clusterPoints)
8: for (c, P,B) in zip(centers, clusterPoints, boundaryPoints) do
9: for b in B do

10: if ISVALIDPUSH(b,
−→
bc, dpush, ℓact, P, objMask) then

11: ai ← (b,
−→
bc, dpush)

12: return ai
13: return null

for all (i, j). We subtract objMask and binL to produce a
binary mask objsToSegment ∈ {0, 1}H×W representing
the objects that are yet to be segmented. If binary mask
objsToSegment is entirely filled with zeros, then the scene
is considered fully segmented, and a null action is returned.

In line 6 of Alg. 2, the objsToSegment binary
mask is used to identify cluster centers centers and
corresponding cluster points clusterPoints. These clus-
ters are computed via K-Means [31] on pixels (i, j) ∈
objsToSegment ∀ objsToSegment(i,j) > 0, with k cho-
sen by the elbow method. While the limitations of K-Means
and the elbow method are acknowledged, the proposed action
selection algorithm is robust to variations in clustering and
operates under minimal requirements, as detailed in the
next paragraph. Alternative clustering techniques, such as
K-Medoids [32] or Mean Shift [33], could also be used ef-
fectively. Then, for each cluster center and its corresponding
points, the boundary points boundaryPoints are derived by
BOUNDARY(·). Each cluster center and boundary point pair
is a candidate for robot action selection.

In lines 8 through 12 of Alg. 2, for each cluster center
c and a corresponding boundary point b, we return a robot
action ai if the action starting at b in the direction of

−→
bc

for push distance dpush is valid. Shown in Fig. 3, a “valid”
push is defined by ISVALIDPUSH(·) through 3 criteria on the
cluster center, contact point, and push direction. First, cluster
center c must lie on an object, denoted by objMaskc =
1. Second, push point b must be accessible by the robot.
Formally, b meets the second criteria if an area in the
direction

−→
cb a short distance from b is free of obstacles,

determined by objMask(i,j) = 0 for all (i, j) in the area
needed for the robot end effector. Third, the push direction−→
bc must not cause the moved object to immediately move
other objects in the same manner. This ensures differences
in spatial twists when BFIF analysis is performed for object
differentiation. To validate this, the set of cluster points P is
translated a distance of dpush in the direction

−→
bc. The push

direction
−→
bc is valid if the translated cluster does not have

a large overlap with other points in objMask. Formally, we
calculate the intersection isect of translated points P ′ and
objMask to be

isect = P ′ ∩ objMask where objMaskP = 0 (4)

Fig. 3: Alg. 2 FindAction(·) heuristically selecting a robot action
ai. [A] Current system segmentation mask Lt visualized over input
image It. [B] objMask represents pixels belonging to objects. [C]
binL represents pixels already segmented. [D] objsToSegment
represents pixels belonging to objects that still need to be segmented
with boundaryPoints, center, and P overlaid. IsValidPush(·)
evaluates a candidate push starting at boundary point b in direction−→
bc towards center c. Candidate action is selected if b is accessible
to the robot and if the translation of cluster points P in the direction−→
bc over a distance dpush does not overlap with many other known
object pixels in objMask.

If |isect|/|P | ≤ ℓact, where ℓact is a constant threshold, then
the robot push direction

−→
bc is valid, and action ai is returned.

If no valid push exists, then a null action is returned.

B. Real-Time Object Segmentation

In Alg. 3, we introduce a real-time object segmentation
algorithm that analyzes rigid body motions resulting from
robot-object interactions. The main components of this algo-
rithm are illustrated in Fig. 4, which include BFIF sampling,
BFIF grouping, and object segmentation.

1) Body Frame Sampling: Lines 1 through 4 in Alg. 3
describe the main components in sampling body frames from
moving pixels. The proposed rt-RISeg framework attaches a
camera to the robot’s wrist to reduce real-time occlusion of
objects throughout interactions. Though not necessary for
a general real-time interactive perception framework, this
choice in implementation results in a moving camera, which
means that the motion must be subtracted from the observed
optical flow to understand which points experienced effective
motion in the real world as opposed to motion relative to the
camera. First, the RGB-D image It−1 and consecutive robot
joint angles θt−1 and θt are used to calculate Et ∈ RH×W×2,
the expected flow due to the camera’s motion. This is done
by converting the depth data from It−1 to 3D coordinates
dMapt−1 ∈ RH×W×3 represented in the camera frame and
deriving the camera transformation matrix camTt−1,t from
θt−1 and θt via forward kinematics [34]. The expected 3D
coordinates at t is then defined as

dMapt = camTt−1,t

[
dMapt−1

1

]
(5)

where dMapt is represented in homogeneous coordinates.
dMapt is then projected back to 2D pixel coordinates
projt ∈ RH×W×2, where each element proj(i,j)t represents
the expected 2D pixel coordinate at time step t for the point
originally located at pixel (i, j) at time step t−1, based solely
on camera motion. The expected flow Et is then calculated



Algorithm 3 SegmentObjs
Input: It−1, It, θt−1, θt, Lt−1

Output: Lt

1: Et ← GETEXPECTEDFLOW(It−1, θt−1, θt)
2: Ot ← OPTICALFLOW(It−1, It)
3: Xt ← Ot − Et ▷ subtract camera motion
4: {Fk

t−1}, {Fk
t } ← CREATEFRAMES(Xt, θt)

5: {Vk
t } ← CALCBFIFS({Fk

t−1}, {Fk
t })

6: Gt ← GROUPBFIFS({Vk
t })

7: Lt ← SEGMENT(Gt, Ot, Lt−1)
8: return Lt

by subtracting the original pixel coordinates from projt.

E
(i,j)
t = proj

(i,j)
t − (i, j) ∀(i, j) (6)

After the observed optical flow Ot ∈ RH×W×2 is pro-
duced by OPTICALFLOW(It−1, It), the effective optical flow
of objects in the real world Xt ∈ RH×W×2 is derived from
element-wise subtraction Ot − Et. If there is no effective
motion caused by robot action ai between t− 1 and t, then
∥X(i,j)

t ∥2 ≈ 0 ∀ (i, j), where ∥X(i,j)
t ∥2 is the Euclidean

norm of the effective optical flow at pixel (i, j).
To compute and analyze BFIFs for object segmentation,

we create body frames {F k
t−1} attached to rigid bodies in

t − 1 and track their motions through to t. Because Xt

represents absolute motion in the real world as a result
of a robot interaction, we know that pixels of interest are
(i, j) ∈ Xt where ∥X(i,j)

t ∥2 >> 0. Thus, we sample n

random pixels from ∥X(i,j)
t ∥2 >> 0 and pick triplets of

pixels to create each frame. Each triplet must not be collinear
and must have a maximum pairwise distance da. A point in
the triplet is chosen to be the origin, while the other two
points are used to find directions for each axis. The x-axis is
perpendicular to the plane formed by the triplet of sampled
points, the y-axis is formed by connecting the origin with
one of the other two points, and the z-axis is perpendicular
to the x and y axes. These sampled frames {F k

t−1} are then
tracked through to t using Xt to create {F k

t }.
2) BFIF Computing and Grouping: A set of body frame-

invariant features {Vk
t } represented in a space frame {s}

can be calculated using corresponding sets of body frames
{F k

t−1} and {F k
t }. In line 5 of Alg. 3, CALCBFIFS(·) cal-

culates each BFIF V ∈ {Vk
t } by deriving the transformation

matrices Tsb and time derivative Ṫsb between each body
frame pair (F k

t−1, F
k
t ) and the space frame {s}, as described

by Equation 2. In this work, {s} is selected to be the camera
frame at t − 1 for simplicity. While BFIFs V ∈ {Vk

t } are
theoretically equal if they are attached to the same rigid body,
noise in effective optical flow Xt causes slight inaccuracies,
which need to be statistically filtered out for accurate BFIF
grouping and object differentiation.

In line 6 of Alg. 3, BFIFs {Vk
t } are grouped for object

differentiation by computing pairwise BFIF Mahalanobis
distances [35] and applying Markov clustering [36] (shown
in Fig. 4-C). Mahalanobis distance is used to compare
the multi-dimensional twist vectors of sampled frames by
incorporating their covariance structure, making it well-
suited for measuring similarity given the feature space. The
resulting distances are transformed into similarity values by
a Gaussian kernel and define a weighted graph where nodes

A. B.

C. D.
Fig. 4: Alg. 3 SegmentObjs(·) uses images (It−1, It) and robot joint
angles (θt−1, θt) to derive effective optical flow Xt. Body frames
{F k

t−1} and {F k
t } are sampled at points where ∥Xt∥2 >> 0.

BFIFs are then computed and analyzed for real-time segmentation
mask seeding. [A] Effective motion resulting from minimally dis-
ruptive robot action ai. Note that effective motion at each point
on each moving object is different, meaning BFIF grouping is
needed for object identification. [B] Objects of interest derived
from ∥Xt∥2 >> 0. [C] Body frames are sampled from pixels
(i, j) ∈ ∥Xt∥2 >> 0 . Analysis of BFIFs results in object-level
grouping. [D] Each body frame in a group is used as a seed point
to flood fill an accurate segmentation mask. Pictured is real-time
object segmentation by rt-RISeg prompts SAM.

represent the BFIFs of sampled frames and edge weights
represent their statistical similarity. Markov clustering is
then applied. This unsupervised graph clustering method
simulates random walks by iteratively reinforcing strong
connections and weakening weak ones through expansion
and inflation operations. Upon convergence, BFIF groups
Gt are formed, where each group g ∈ Gt corresponds to
a connected component in the clustered graph.

3) Object Segmentation and Forward Propagation: In
line 7 of Alg. 3, SEGMENT(·) uses the grouped BFIFs Gt,
optical flow Ot, and the previous segmentation mask Lt−1 to
propagate previous masks to the current frame and segment
new objects resulting from motion between t− 1 and t.

First, accumulations of previous segmentation masks from
all robot interaction steps i and system time steps t are
propagated to the current frame t by using Lt−1 and ob-
served optical flow Ot. Formally, propagation of previous
segmentations is defined as L

(x,y)
t = L

(i,j)
t−1 ∀ L

(i,j)
t−1 >

0, where (x, y) = (i, j) + (a, b) ∈ O(t)(i,j).
Then, new object segmentations are added to Lt using the

BFIF groupings Gt. Remember that each BFIF is associated
with a body frame attached to a rigid body in our scene. If
there were no physical robot-to-object interactions between
t − 1 and t, then Xt ≈ 0H×W and body frame sets Ft−1

and Ft would be empty. In this case, Lt is returned because
BFIF groupings Gt would also be empty. Otherwise, each set
g ∈ Gt contains body frames identified to have equal BFIFs.
Thus, each body frame in g will be segmented as one object
in mask Lt. First, the corresponding pixel of each body frame
in g is set to an object ID ℓ /∈ Lt, meaning a new object is
detected and segmented. These initial assignments act as seed
points for object ℓ since the number of sampled pixels n used
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Fig. 5: Qualitative comparison of unseen object instance segmentation between MSMFormer [6], SAM [10], rt-RISeg (Ours), and rt-RISeg
Prompts SAM (Ours). Each column showcases a different scene after robot interactions are completed. Each row showcases a method’s
object segmentation. MSMFormer consistently under-segments each scene, while SAM consistently over-segments each scene. rt-RISeg
effectively segments objects and autonomously prompting SAM increases accuracy.

for body frame construction in line 4 of Alg. 3 is very small
relative to the number of pixels H×W . Afterwards, Breadth
First Search starts from each seed point and is used to assign
object ID ℓ to pixels that move with similar gradient as to
neighboring pixels already assigned to ℓ.

Rather than simply using optical flow gradients, BFIFs
must be used for the initial seeding of newly segmented
objects because BFIFs are body frame-invariant (shown in
Fig. 4). Once each set g ∈ Gt is segmented, the real-time
segmentation mask Lt is returned.

V. EXPERIMENTS

In this section, we will showcase that the proposed rt-
RISeg framework is effective for real-time interactive unseen
object segmentation in cluttered environments by compari-
son with state-of-the-art methods Mean Shift Mask Trans-
former (MSMFormer) [6] and Segment Anything Model
(SAM) [10]. Our experiments demonstrate that unseen ob-
ject segmentation can be interactively performed without
any learned segmentation model and without disrupting
the initial task formation. Although rt-RISeg can run as a
lightweight standalone method, we exhibit near perfect object
segmentation mask boundaries when using rt-RISeg masks
to autonomously prompt vision foundation models.

A. Implementation and Experiment Setup

1) rt-RISeg implementation: The rt-RISeg interactive per-
ception framework uses a Franka Emika Panda robot [37] to
interact with scene objects. An Intel Realsense D415 RGB-D
Camera [38] is used to capture real-time visual data and is
rigidly attached to the wrist of the robot end-effector, always
facing down in line with the vertical z-axis. A 30cm long 3D
printed rectangular end-effector extension provides adequate
field-of-view throughout interactions. In line 10 of Alg. 2,
constants dpush and ℓact were introduced to heuristically
validate a candidate action. dpush indicates the distance of

Fig. 6: Experiment objects chosen for segmentation difficulty.

each robot action ai and is defined as 2cm. ℓact is the
threshold for the maximum allowed intersection area divided
by cluster area as a result of moving the candidate cluster
and is defined as 0.3. In line 2 of Alg. 3, Recurrent All-
Pairs Field Transforms for Optical Flow (RAFT) [39] is
used, though any off-the-shelf optical flow method can be
substituted without affecting the framework’s generality.

2) Experiment setup and dataset: Since no standard inter-
active perception dataset exists, we evaluate our pipeline by
creating 20 scenes in which 4-6 objects are placed in close
proximity to one another and lie on a flat, white tabletop.
Experiment objects come from a set of toy food items and
patterned animals shown in Fig. 6, which are particularly dif-
ficult to segment due to shape and color. For each scene, 3-5
robot interactions are autonomously identified and completed
for real-time segmentation, resulting in the evaluation of
roughly 100 total images. Ground truth masks are manually
annotated for each of these images.

B. Evaluation Metrics

For each experiment scene, we evaluated the accuracy of
rt-RISeg segmentation masks L∗

t , which are the segmentation
masks produced at the end of each robot interaction ai,
where interaction time step i = 0 is the initial scene
configuration, and i > 0 is the scene configuration after
interaction ai is completed. In Table I, Fig. 5, and Fig. 7, we
quantitatively and qualitatively compare segmentation results
of our rt-RISeg method to state-of-the-art UOIS models
MSMFormer [6] and SAM [10]. We also showcase refined
segmentation masks when using rt-RISeg to autonomously
prompt SAM. For Table I and Fig. 7, the evaluation statistics
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Fig. 7: Percentage of objects correctly segmented by each method
across scene configurations resulting from robot actions, mea-
sured by the Overlap F-measure ≥ 75% and averaged across
all experiment scenes. Although rt-RISeg is able to consistently
segment about 90% of objects after all interactions, based on our
observations, the 75.1% object segmentation accuracy suggests that
rt-RISeg object boundary refinement is not very accurate. Using rt-
RISeg to prompt SAM greatly improves boundary segmentation but
does not dramatically improve true object overlap segmentation due
to the area of segmentation being very similar.

at i indicate averages across all experiment scenes after the
interaction ai is complete.

Object segmentation performance is evaluated using pre-
cision, recall, and F-measure on both Overlap and Boundary
criteria [4], [16]. These evaluation metrics for rt-RISeg
are shown in Table I, along with the same metrics for
MSMFormer and SAM. In addition to precision, recall, and
F-measure, Fig. 7 shows the percentage of objects in a
scene segmented with a high accuracy at each configuration.
High accuracy is defined as segmentation of an object with
Overlap F-measure ≥ 75%.

C. rt-RISeg Prompting Foundation Models

As mentioned previously, rt-RISeg is a standalone inter-
active perception framework that autonomously segments
unseen objects in real time and without a learned segmen-
tation model. Yet, some learned segmentation models offer
impressive performance in boundary segmentation accuracy.
A few of these models are also able to be prompted for
segmentation of specific regions in a given image. Segment
Anything Model is one with strong boundary recognition
but frequently over-segments objects when unsupervised. In
Fig. 5, we qualitatively showcase how segmentation masks
autonomously generated by rt-RISeg can be used to prompt
SAM for near perfect boundaries. Additionally, Table I and
Fig. 7 quantitatively showcase the improved segmentation
accuracy when rt-RISeg is used to prompt SAM.

D. Discussion of Results

Interaction step i = 0 indicates the scene’s initial con-
figuration, in which rt-RISeg does not segment any objects.
Shown in Fig. 7, rt-RISeg incrementally segments objects in
the scene with each robot interaction, eventually surpassing
static segmentation accuracy after 2-3 robot interactions.
After all interactions, rt-RISeg is able to accurately segment
75.1% of objects in a given scene, measured by Overlap
F-measure ≥ 75%, while static segmentation models only

Method Step i
Overlap Boundary

P R F P R F

MSMFormer [6]

0 76.9 40.7 45.7 55.1 31.7 31.6
1 79.9 43.5 48.9 56.8 34.8 34.4
2 80.7 42.1 49.6 53.1 33.9 35.0
3 84.0 44.5 51.2 61.7 37.0 38.7
4 77.9 40.9 48.2 54.2 35.3 36.3
5 77.0 51.0 59.0 47.9 40.3 41.5

SAM [10]

0 63.6 59.0 61.1 35.3 62.1 43.7
1 62.7 53.3 55.2 36.3 54.3 39.3
2 61.7 55.2 57.8 34.9 57.8 41.5
3 58.6 52.8 55.0 33.3 55.3 39.4
4 60.0 57.5 58.6 31.6 58.5 39.9
5 57.0 52.3 54.1 29.3 53.5 35.9

rt-RISeg
(Ours)

0 100.0 0.0 0.0 100.0 0.0 0.0
1 89.2 19.6 30.5 54.8 12.5 19.2
2 92.7 34.5 48.4 54.2 21.5 30.0
3 92.9 48.3 60.6 51.7 30.0 37.0
4 89.9 59.9 70.1 57.1 39.8 46.3
5 85.2 71.8 75.4 55.8 49.3 51.8

rt-RISeg
prompts SAM

(Ours)

0 100.0 0.0 0.0 100.0 0.0 0.0
1 98.4 21.1 32.4 86.7 21.3 31.8
2 98.4 36.5 51.6 80.0 34.4 46.8
3 98.5 51.6 65.2 80.1 49.7 59.5
4 96.8 61.9 74.1 82.6 61.2 69.5
5 91.4 73.4 79.5 79.1 72.4 74.9

Table 1: Segmentation results of MSMFormer, SAM, rt-RISeg
and rt-RISeg prompts SAM across scene configurations resulting
from robot actions. rt-RISeg outperforms learned models after all
interactions in Overlap and Boundary P/R/F metrics. Using rt-RISeg
to prompt SAM slightly improves Overlap metrics and drastically
improves Boundary metrics.

accurately segment between 45% and 50%. Because rt-RISeg
is able to consistently produce segmentation masks for about
90% of objects in a given scene, based on our observations,
this 75.1% metric indicates that rt-RISeg is not very accurate
in refining object mask boundaries, which is supported by
Boundary statistics in Table I.

In addition to an increasing trend in object segmentation
accuracy, the rt-RISeg Overlap and Boundary P/R/F metrics
also increase with each robot interaction, surpassing the
learned segmentation models, MSMFormer and SAM, after
2-3 robot interactions. On average, rt-RISeg outperforms
learned models in object segmentation accuracy by about
27.5%, Overlap F-measure by about 18.5%, and Boundary F-
measure by about 12.5%, after all interactions. Furthermore,
using rt-RISeg to autonomously prompt SAM only slightly
improves object-level segmentation accuracy, but drastically
improves Boundary P/R/F metrics. This is because the seg-
mented area remains similar to the rt-RISeg segmentation
masks, but the boundaries are much more accurate.

VI. CONCLUSION

In this paper, we proposed a real-time model-free in-
teractive perception framework, rt-RISeg, which uses non-
disruptive interactions and Body Frame-Invariant Feature
(BFIF) analysis for accurate unseen object segmentation.
The designed feature uses the insight that two body frames
attached to the same moving rigid body will have the same
spatial twist observed by any fixed world frame, even if their
rotations and translations in space are different. Without any
learned segmentation model, rt-RISeg uses the BFIF for fully
self-contained object segmentation. We then demonstrated
the effectiveness of rt-RISeg in autonomously segmenting



real-world cluttered tabletop scenes without breaking each
scene’s initial task formation. Finally, we showcased how
rt-RISeg can be used to prompt learned methods in an un-
supervised manner for highly accurate segmentation masks.
A potential limitation in this work is presented by the
wrist-mounted camera, as it requires balancing a tradeoff
between maximizing field of view and minimizing robot-
object occlusion. Future work could explore incorporating
a next-best-view algorithm through the use of a secondary
robot arm dedicated to perception, which would complement
the interactive exploration conducted by the primary arm.
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