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Abstract—LiDAR Simultaneous Localization and Mapping
(SLAM) systems are essential for enabling precise navigation
and environmental reconstruction across various applications.
Although current point-to-plane ICP algorithms perform effec-
tively in structured, feature-rich environments, they struggle in
scenarios with sparse features, repetitive geometric structures,
and high-frequency motion. This leads to degeneracy in 6-
DOF pose estimation. Most state-of-the-art algorithms address
these challenges by incorporating additional sensing modalities,
but LiDAR-only solutions continue to face limitations under
such conditions. To address these issues, we propose a novel
Degeneracy-Aware Multi-Metric LIDAR Odometry and Map-
ping (DAMM-LOAM) module. Our system improves mapping
accuracy through point cloud classification based on surface
normals and neighborhood analysis. Points are classified into
ground, walls, roof, edges, and non-planar points, enabling
accurate correspondences. A Degeneracy-based weighted least
squares-based ICP algorithm is then applied for accurate odom-
etry estimation. Additionally, a Scan Context based back-end is
implemented to support robust loop closures. DAMM-LOAM
demonstrates significant improvements in odometry accuracy,
especially in indoor environments such as long corridors.

I. INTRODUCTION

LiDAR Odometry and Mapping has achieved remarkable
accuracy in recent years. With a wide range of applications
in various fields, including robot navigation, construction [1],
autonomous driving [2], and underground mining exploration
[3], it continues to be a fundamental technology for ro-
bust SLAM in complex and dynamic environments. LiDAR
sensors are capable of providing stable and rich geometric
features for spatial understanding, enabling high versatility
in various environments, even under changing lighting con-
ditions. The Iterative Closest Point (ICP) algorithm is the
most commonly used method for scan matching and pose
estimation.

In recent years, multiple algorithms have used point-
to-point ICP or point-to-plane ICP [4] [5] [6] [7]. These
algorithms show great performance in specific environments
with specific parameters, but fail to perform well in varying
dominant geometries. Some perform exceptionally well in
outdoor environments but fail in indoor environments, high-
lighting a common domain-specific performance limitation.

However, the accuracy of LiDAR-based solutions is highly
dependent on the presence of sufficient geometric features in
the environment. Different geometric features have different
impacts on the ICP solution. In scenarios where such con-
straints are limited, such as in hallways, underground tunnels,
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Fig. 1: The image demonstrates feature classification and
mapping accuracy of DAMM-LOAM on Ground Challenge
Corridor 1 Dataset

or long corridors, the underlying optimization problem often
becomes ill-conditioned, resulting in degraded or inaccurate
localization performance. To address these challenges, sev-
eral approaches have been proposed to enhance degeneracy
robustness [8] [7] [9]. Some methods focus on improving
point correspondences, while others actively detect degen-
erate scenarios and adapt the estimation process either by
constraining motion along poorly observable directions or
fusing complementary sensor modalities. Recent works have
explored strategies such as leveraging multi-modal fusion
to compensate for environments with limited perceptual
features, and adaptively adjusting solver behaviour based on
observability analysis.

In this work we introduce two main contributions:

1) Normal Map based Semantic Feature Extraction:
We introduce a method to classify surface features,
namely ground, walls, roof, and edges using a normal
map. These semantic labels are then leveraged to per-
form multi-metric correspondence search and improve
the robustness of ICP registration.

2) Degeneracy-Aware Point Wise Adaptive Weighting:
We develop a point-wise adaptive weighting scheme
based on degeneracy analysis. These weights are inte-
grated into the weighted least squares objective of ICP,
allowing optimization to account for spatial observabil-
ity and accuracy in under-constrained environments.
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II. RELATED WORK
A. LiDAR Odometry

LiDAR odometry forms the basis of many contemporary
SLAM systems. Owing to its high precision, long-range
sensing, and robustness to lighting variations, it has become
a prominent focus of recent research [4] [10] [11] [12].

Some SLAM methods adopt varied point selection strate-
gies: some apply uniform voxel grid down-sampling to
reduce computational load [12], while others extract semantic
or geometric features to retain structurally informative points
[13] [14]. Different types of ICP algorithms have been
employed in various studies. KISS-ICP [4] leverages only
point-to-point ICP. While it shows exceptional performance
compared to other algorithms, it fails in structured and
degenerate environments such as long corridors due to its
reliance on a single error metric. In contrast, other algorithms
[14] [13], on the other hand, combine combinations of point-
to-point, point-to-plane and point-to-line error metrics to
remain robust under such conditions. GenZ-ICP [10] takes it
one step further by implementing adaptive weighting based
on the number of planar and non-planar points, improving
accuracy and performance in both indoors and outdoors.

While the classification of planar and non-planar regions
shows strong performance, it does not fully exploit all the
available information. Integrating semantic information into
LiDAR SLAM marks a significant advancement toward de-
veloping more robust and accurate LiDAR odometry systems
[13]. Our work focuses on classifying point cloud based
on information obtained from a projected normal map, and
hence applying multi-metric point cloud registration.

B. Feature Extraction

Over the years, multiple studies have proposed methods
for feature extraction in structural element classification [13],
[15], [16]. Techniques like Principal Component Analysis
(PCA), Region Growing Segmentation [17], RANSAC-based
plane detection [18]. PCA remains a pivotal technique for
normal vector estimation and feature extraction in point
cloud. SuperOdometry [14] uses PCA to distinguish and
extract planar, non-planar, and edge features from the point
cloud data. PCA-based methods estimate surface normals
by analysing eigenvectors and eigenvalues of covariance
matrices. Accuracy of PCA decomposition heavily relies on
the correct selection of neighbourhood, and hence it requires
highly tuned values for different LiDARs. NV-LIOM [19]
uses a spherical projection-based normal extraction method.
For every pixel in the range image, the normal vector is
computed by calculating local derivatives using a window-
based approach. Inspired by this, we further utilised this
normal map to classify structural geometry into ground
plane, walls, roof, edges and non-planar points. Spherical
projection methods generally have lower computational load
compared to both RANSAC and PCA.

C. Degeneracy Awareness

Point cloud registration methods, such as ICP, are widely
adopted and have shown strong performance across a vari-

ety of real-world applications. However, they are prone to
degeneracy during optimization, especially in environments
with poor geometric structure or repetitive patterns—such
as tunnels or corridors, which can result in ill-conditioning
along one or more degrees of freedom.

Extensive research has been conducted on identifying
degeneracy in such environments. Some approaches, like
those in [20] [21], utilise the condition number defined as
the ratio of the largest to the smallest eigenvalue of the
optimization Hessian as a single metric to detect degeneracy
across all six degrees of freedom. In contrast, the method
in [22] evaluates each eigenvalue individually to classify the
corresponding direction as degenerate or not.

To address degeneracy, various solutions have been pro-
posed. Some methods, such as [23] [24], rely on external
odometry sources when the environment becomes degener-
ate. Others, including [7] [6], enhance the registration process
in degenerate scenarios by reformulating the optimization
with additional soft or hard constraints that limit movement
along poorly observable directions.

ITII. SYSTEM OVERVIEW

Aligning a source point cloud (S) to a reference point
cloud R using a rigid body transformation T° € SE(3)
is a fundamental problem in LiDAR odometry, typically
addressed by algorithms like Iterative Closest Point (ICP).
While ICP aims to estimate the optimal transformation by
minimizing residual error, its efficacy depends on robust data
association and accurate error formulation.

This section introduces DAMM-LOAM, a novel LiDAR
odometry framework designed to enhance accuracy and
robustness through a comprehensive, multi-stage pipeline.
An overview of the process is shown in fig. [2}

DAMM-LOAM processes LiDAR point cloud for odom-
etry and mapping. It begins with point cloud classification,
segmenting the source cloud into geometric categories: wall,
edge, ground, roof, and non-planar. This enables adaptive
processing and tailored correspondence finding. Following
classification, points are adaptively downsampled to reduce
computation while preserving geometric information.

Class-wise correspondences are then established using a
voxel hash map. Degeneracy analysis identifies and mitigates
ill-posed configurations. Finally, joint optimization combines
point-to-point and point-to-plane residuals to estimate the
optimal pose transformation 7'. The residuals are defined as
follows:

o Point-to-Point:

N
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=1

T* = arg min
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The high-precision odometry and updated map are inte-
grated with Scan Context, leveraging the local LiDAR-frame
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Fig. 2: The pipeline extracts surface normals from LiDAR point cloud, classifies points into structural elements, and performs
robust, degeneracy-aware odometry and mapping with loop closure using Scan Context for global consistency.

cloud for loop closures, correcting accumulated drift, and
improving global consistency.

A. Geometric Feature Extraction

In this section, we describe the geometric processing
pipeline, which includes the spherical projection of raw
point cloud data, surface normal estimation, and a per-point
classification algorithm. These stages transform raw point
cloud into semantically meaningful, structured representa-
tions. This enables better correspondence. This section draws
inspiration from the methodology presented in [25].

1) Spherical Projection: To efficiently analyse LiDAR
data, we first project the raw 3D point cloud into a 2D spher-
ical range image. Let each point be given in Cartesian coor-
dinates as p = (,y, z)T. The point is converted to spherical
coordinates as follows: the range is r = \/x2 + y2 + 22, the
azimuth angle is § = arctan(z, z), and the elevation angle
is ¢ = arcsin (¥).

We then create a 2D range image Z € R"*W by
discretising the spherical field of view, where each pixel
(u,v) corresponds to a fixed azimuth and elevation angle.

eu = Omin +u - Aev
Dy = Pmin + V- A¢

where W and H denote the width and height of the image,
and A, A¢ are the angular resolutions. The inverse mapping
reconstructs a 3D point from the spherical pixel:

3)

COS ¢y, + sin B,
sin ¢, 4)

COS ¢y - COS B,

Pu,v =

Tuw *

The 3D point p,,, corresponds to a specific spatial location
in the global point cloud P. Specifically, p,,. € P denotes
the 3D point associated with pixel coordinates (u,v) in the
range image.

2) Surface Normal Estimation: With the spherical range
image constructed, we estimate the surface normal for each
valid pixel using a differential method adapted from [25].
For a pixel (u,v), we define two local tangent vectors
by computing the differences along horizontal and vertical
directions:

t, = Pu+1,0 — Pu—1,v, )
tv = Pu,v+1 — Pu,v—1

The surface normal is then estimated as the normalized
cross product:

t, X t,
Ny, =——7
B b x|

(6)

As mentioned in [19], to ensure a consistent orientation, the
normal is flipped if it points away from the sensor:

if ny - Py >0, then n, ,, < —1my, (7)

This generates a dense normal map with normal infor-
mation for each pixel. This enables per-point geometric
reasoning.

3) Normal-Based Geometric Classification (Proposed):
As depicted in Fig. |3} our LiDAR pipeline includes a rule-
based classification algorithm. It leverages surface normals
and local geometry to label each point in the LiDAR scan.

Each point is classified into one of five categories based
on its 3x3 neighbourhood (comprising the centre point and
8 neighbours) and their computed normal vectors:

o Ground: Characterized by horizontal surfaces where the
distribution of valid normals strongly clusters, with at
least two-thirds (= 66.7%) exhibiting a dominant Z-axis
component pointing upwards (n, > 0).

¢ Roof: Defined by downward-facing horizontal surfaces
where at least two-thirds (=~ 66.7%) of valid normals
show a dominant Z-axis component pointing down-
wards (n, < 0).
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Fig. 3: Overview of the geometric classification pipeline:
The raw LiDAR point cloud is projected into a spherical
range image, surface normals are computed using local
neighborhoods, and each point is subsequently categorized
into geometric classes.

o Wall: Identified as vertical surfaces where at least two-
thirds (=~ 66.7%) of valid normals demonstrate a dom-
inant X or Y-axis component.

o Edge: Detected in regions with significant normal vec-
tor divergence, specifically when the average angular
variance between all pairs of valid normals in the
neighbourhood exceeds a threshold of 15.0 degrees
(0.26 radians).

o Unknown: Assigned to noisy, irregular, or ambiguous
regions where valid normals are inconsistent, undefined,
or fail to achieve the two-thirds majority consensus for
Ground, Roof, or Wall classification.

The classified point cloud enhances semantic understanding
and supports robust data association in all kinds of environ-
ments.

B. .Degeneracy Aware Weighting

In featureless or symmetrical environments, a state estima-
tion algorithm must evaluate how well the scene geometry
constrains the estimation along all translational directions.
The Hessian matrix H = J T J, where J is the Jacobian of the
residuals, captures the curvature of the cost function with re-
spect to the six degrees of freedom (6-DOF) of the state. The
Hessian matrix H is partitioned into four submatrices H'tt,
H'tr, H'rr, and H'rt according to the coupling between the
rotational components R and translational components t of
the pose:

Hl — |:H;r H;t:| (8)
ngr H t/t 6X6

The submatrix H,, and Hg; contain only information
related to R and t, and they can be used to analyse
degradation in rotation and translation, respectively.

The eigenvalue analysis of Hyy is performed to calculate the
three principal directions. The eigenvalues associated with
them provide a measure of the observability in each direction.

M 00
Hie = VIV =V, [0 Mo 0|V] (9
0 0 g

The next step involves computing the information matrix,
which aggregates the contributions from all points and cap-
tures the influence of each information pair (p,n), similar
to the approach proposed in [7].

7, = [ ny] ' (10)

All information pairs are then projected onto the eigen
space of the translational Hessian. This projection yields the
contribution of each point along the principal directions of
translation.

Ct - |It . Vt| (11)

The eigenvalues corresponding to each eigenvector are
normalised to the range [0,1] by dividing each eigenvalue
by the maximum eigenvalue. Each normalised eigenvalue is
then used to scale the corresponding column of the contri-
bution matrix C; € RN*3, where each column represents
the contribution of all points along a specific eigenvector
direction. This column-wise weighting is given by:

i A 00
Ce=C-|0 Xa 0]c€ RN*3 (12)
0 0 Mg

This operation scales the contributions according to the ob-
servability of each direction. Directions with higher eigenval-
ues (well-constrained) receive more weight, while directions
with lower eigenvalues (poorly-constrained or degenerate)
receive less weight.

Subsequently, a row-wise Euclidean norm is computed to
obtain a single scalar weight for each point:

w® = Hét(“)Hz, fori=1,...,N (13)
where C{"” denotes the i™ row of the weighted contribu-
tion matrix. ‘

This scalar weight W,EZ) reflects how much each point
contributes to localizability in the well-observable directions
versus unobservable ones. These individual point weights can
be incorporated into a weighted least-squares objective to en-
hance the robustness of point-cloud registration. Specifically,
the residuals are defined in Section III: System Overview, and
the optimization problem is formulated as:

N
min ;wi (n] (Rp; +t —q))°, (14)

where:



e P;,q; are corresponding source and target points for
planar constraints,

e n; is the surface normal at q;,

o R € SO(3) is the rotation matrix,

e t € R3 is the translation vector,

e w; € [0,1] is the degeneracy-based weight for each
planar correspondence.

Apart from the degeneracy-based weighting of planar
points, we also apply an adaptive Weighting scheme that
accounts for the number of planar and non-planar correspon-
dences, as introduced in [10]. Let Ny and N, denote the
number of planar and non-planar correspondences, respec-
tively, and let N = N, + Np,. The final weighted least
squares objective becomes:

Nt 2 Moo 2
R,t = argmin az He}(’f)H +(1—-a) Z Heélg) ‘
j=1 k=1
15)
where:
. eg ) and ef)’;) are the planar and non-planar residuals

(defined in Section III),
e « € [0,1] is the adaptive weight based on the relative
number of planar and non-planar correspondences.

C. Scan-Context Back-end

To improve global consistency and enable loop closure,
we integrate the Scan Context [26] algorithm into the back-
end of our SLAM system. For each incoming 3D LiDAR
scan, a grid-based polar descriptor is generated by encoding
the maximum height of points within discretised azimuthal
and radial bins. These descriptors are stored and indexed
using a KD tree based on a rotation-invariant ring key.
During run-time, the descriptor of the current scan is matched
against previous entries to identify potential loop closures
using a two-phase retrieval process involving coarse nearest-
neighbour search followed by fine-grained similarity scoring
using column-wise cosine distance. Upon successful loop
detection, the corresponding pose pair is added as a loop
constraint in the pose graph, enabling back-end optimization
to correct accumulated drift and refine the global map.

IV. RESULTS

To evaluate our method, we used the widely used EVO
evaluator [27], which provides metrics for both absolute and
relative pose errors. We tested our algorithm under consistent
parameters across a variety of challenging datasets, includ-
ing degenerate environments and outdoor sequences. Our
approach demonstrated significantly improved performance
compared to current state-of-the-art algorithms, particularly
in the absolute pose error metric. We consistently outper-
formed existing methods on all datasets in this metric.
Although in the relative pose error metric, some baseline
methods showed competitive or superior results in specific
sequences, our algorithm still achieved highly competitive
overall performance.

TABLE I: Quantitative results for the Long_Corridor sequence of the SubT-
MRS dataset [28]. Some comparison results have been reproduced from
[10].

| Absolute pose error [m] | Relative pose error [m]

Method
|Mean Max RMSE Stdev.|Mean Max RMSE Stdev.
KISS-ICP [4] 6.83 19.05 8.72 541 | 0.10 0.94 0.14 0.10
CT-ICP [6] 44.18 60.14 4566 11.55| 0.19 7.15 0.68 0.65
DLO [29] 7.69 2799 9.09 486 | 0.26 22.74 1.32 1.29

Point-to-point ICP [30] | 6.83 19.05 8.72 541 | 0.10 0.94 0.14 0.10
Point-to-plane ICP [31]|32.84 40.88 33.16 4.55 | 0.13 12.50 0.68 0.67
GENZ-ICP [10] 1.69 432 199 1.04 | 0.06 0.73 0.09 0.07

| 147 408 172 089 |0.12 097 017 0.3

Ours

TABLE II: Quantitative results for the Corridor]l and Corridor2 sequences
of the Ground-Challenge dataset [32]. Some comparison results have been
reproduced from [10]

| Absolute pose error [m] | Relative pose error [m]

Sequence Method
| |Mean Max RMSE Stdev.| Mean Max RMSE Stdev.
KISS-ICP [4] | 1.70 476 2.17 135 0.12 059 0.15 0.09
CT-ICP [6] 0.44 1.05 054 030 | 0.05 0.23 0.06 0.04
. DLO [29] 0.34 1.04 045 030 | 0.05 0.55 0.08 0.06
Corridorl
(zigzag) Zhang [33] 0.22 0.67 028 0.17 | 0.05 026 0.06 0.04

X-ICP [7] 094 945 205 1.83|0.05 047 0.07 0.05
GENZ-ICP [10]| 0.19 0.49 024 0.14 | 0.04 0.23 0.06 0.04

| Ours 0.05 0.17 0.06 0.02 | 0.04 046 0.05 0.03

KISS-ICP [4] | 0.54 1.34 0.68 041 | 0.14 046 0.16 0.08
CT-ICP [6] 1.04 236 130 0.78 | 0.12 0.35 0.14 0.06
DLO [29] 072 1.72 093 059 | 0.12 0.34 0.14 0.07

Corridor2
(straight | 7hang [33] | 021 0.60 028 0.18 | 0.12 036 0.14 0.06
forward) | X-ICP [7] | 5.85 9.69 692 370 | 0.3 037 0.5 0.07

GENZ-ICP [10]| 0.18 0.41 020 0.09 | 0.12 036 0.14 0.07

| Ours [ 0.07 0.21 0.08 0.04 | 0.12 039 0.14 0.06

TABLE II: Quantitative results for the Newer College dataset [34].

| Absolute pose error [m] | Relative pose error [m]

Method

|Mean Max RMSE Stdev.| Mean Max RMSE Stdev.

KISS-ICP [4] | 0.16 049 024 009 | 022 0.78 024 0.09
GENZ-ICP [10] | 0.14 043 015 0.07 | 0.22 0.78 024 0.09

| 013 035 015 006 | 049 226 0.68 048

Ours

V. CONCLUSIONS

In this work we proposed DAMM-LOAM, a degeneracy-
aware LiDAR odometry and mapping system designed
to improve pose estimation in challenging, low-feature
environments. Our approach classifies points based on
geometric features derived from the normal map and
leverages this classification to assign semantic-specific
weights to correspondences. A novel observability-aware
weighting scheme, computed using the translational Hessian
eigenvalues, further enhances robustness by reducing
the influence of poorly observable directions during
optimization. Experimental results on multiple degenerate
and outdoor datasets demonstrate that DAMM-LOAM
shows significant improvements in absolute pose accuracy.



However, since our approach is dependent on the range and
normal map, it is currently limited to repeating LiDARs only.
Although the segmentation algorithm is computationally
efficient, it may produce outliers in highly unstructured or
irregular environments.

Future work will explore fusion with visual sensors to
improve feature segmentation and extend degeneracy anal-
ysis to rotational components. Learning-based classification
from normal maps is another promising direction to improve
generalization across diverse environments.
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