
Distributed Multi-Robot Multi-Target Tracking Using Heterogeneous
Limited-Range Sensors

Jun Chen, Mohammed Abugurain, Philip Dames, and Shinkyu Park

Abstract— Utilizing heterogeneous mobile sensors to actively
gather information improves adaptability and reliability in
extended environments. This paper presents a cooperative
multi-robot multi-target search and tracking framework aimed
at enhancing the efficiency of the heterogeneous sensor network
and, consequently, improving overall target tracking accuracy.
The concept of normalized unused sensing capacity is introduced
to quantify the information a sensor is currently gathering
relative to its theoretical maximum. This measurement can be
computed using entirely local information and is applicable to
various sensor models, distinguishing it from previous literature
on the subject. It is then utilized to develop a heuristics
distributed coverage control strategy for a heterogeneous sensor
network, adaptively balancing the workload based on each
sensor’s current unused capacity. The algorithm is validated
through a series of ROS and MATLAB simulations, demon-
strating superior results compared to standard approaches that
do not account for heterogeneity or current usage rates.

I. INTRODUCTION

Multiple target tracking (MTT) is a fundamental research
problem where one needs to continuously estimate the states
of multiple moving targets of interest within an assigned
space. Due to its importance in application areas, ranging
from environmental monitoring, e.g., comprehending collec-
tive behaviours of social animals [1]–[4] or pedestrians [5],
to intelligent autonomous systems, e.g., autonomous driving
[6], it has drawn increasing attention in the signal processing,
computer vision, and robotics communities.

This paper proposes a novel multi-robot multi-target joint
state estimation and planning approach for heterogeneous
limited-FoV robotic networks. The proposed method allows
a team of robots to search for targets over a task space and
actively maintain coverage of a majority of detected targets
in a distributed manner. This sensor-based heuristic planning
algorithm is adaptive and efficient for a variety of application
scenarios, independent of the state of target motion, number
of targets, and size of the environment. To the best of our
knowledge, our work presents the first distributed algorithm

*This work was supported by the Natural Science Research Project
of Jiangsu Higher Education Institutions under Grant 24KJD510007,
the Research Start Fund of Nanjing Normal University under Grant
184080H201B60, funding from King Abdullah University of Science and
Technology, and NSF grant CNS-2143312.

J. Chen is with the School of Electrical and Automation Engi-
neering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
jun.chen@nnu.edu.cn

M. Abugurain and S. Park are with the Computer, Electrical,
and Mathematical Science and Engineering Division, King
Abdullah University of Science and Technology, Thuwal 23955,
Saudi Arabia {mohammed.abugurain,shinkyu.park}
@kaust.edu.sa

P. Dames is with the Department of Mechanical Engineering, Temple
University, Philadelphia, PA 19122, USA pdames@temple.edu

that allows heterogeneous sensors to jointly detect, localize
and track an unknown and time-varying number of targets.

We summarize our main contributions as follows.
1) We propose a new measure called the normalized

unused sensing capacity that quantifies the difference
between the current information that a sensor gathers
and the theoretical maximum. This can be computed
using entirely local information and does not require
any assumptions about the type of sensor or the shape
of the sensor FoV.

2) Leveraging this measure, we first replace the standard
Voronoi diagram in Lloyd’s algorithm with the power
diagram, with the goal of balancing the task load across
the team. In particular, we assign robots that have more
accurate sensors, larger sensor FoVs, and/or are not
currently tracking any objects to cover larger areas.

3) While power diagram implementation provides fast
and near optimal space allocation for heterogeneous
robotic teams, it does not yield the best tracking ac-
curacy. Therefore, we propose the capacity-constraint
Voronoi diagram (CCVD), a closed-form optimal space
partitioning algorithm, to further improve the track-
ing performance and to evaluate the power diagram
method by comparing the power diagram implemented
algorithm with the one using CCVD, i.e., the theoret-
ical optimum.

4) We demonstrate the efficacy of our approach through
a series of experiments in simulated environments to
show that the approach yields higher quality and more
reliable tracking than the standard Voronoi diagram-
based approach and the zigzag coverage path planning
approach [7], especially when the robots are highly
heterogeneous.

II. PROBLEM FORMULATION

This paper considers the multi-robot, multi-target tracking
(MR-MTT) problem, defined below.

Problem 1 (MR-MTT): Consider a network of n mobile
sensors (i.e., robots) denoted by S = {s1, . . . , sn} with two-
dimensional positions Q = {q1, . . . , qn} and orientations
Θ = {θ1, . . . , θn}. Each robot has the following kinematic
model:

q̇i = ui

θ̇i = ωi,
(1)

where ui and ωi are the two-dimensional and one-
dimensional control inputs for the translational and rotational
velocity of the ith robot, respectively. The robots move

in a convex environment E ⊂ R2 with known bounds.1

There is a set of m targets in the environment at positions
X = {x1, . . . , xm}, where the state of each target is its two-
dimensional position xi ∈ E. Targets may be moving in an
unknown arbitrary pattern or be stationary, and each robot’s
onboard sensors have a certain probability of detecting them.
The robots are tasked to search for and track the targets, with
the goal to identify the number of targets and the state of
each target.

Robots communicate with each other bidirectionally. A
neighbor set Ni of a robot si is defined as all robots that
are within the communication range of robot si excluding
si itself. For the purpose of analysis, we assume that the
communication range of each robot is large enough such
that Ni is non-empty at all times, which can be ensured by
using, for instance, connectivity control algorithms [12] to
sustain the connectivity.

A. Lloyd’s Algorithm

Given a density function ϕ(x) defined over the 2-
dimensional Euclidean space, the objective of Lloyd’s al-
gorithm is to compute Q = {q1, · · · , qn} and W =
(W1, · · · ,Wn) minimizing the following functional:

H(Q,W) =

n∑
i=1

∫
Wi

f
(
∥x− qi∥

)
ϕ(x)dx, (2)

where Wi is the dominance region of robot si (i.e., the
region that is assigned to robot si for coverage), ∥ · ∥ is
the Euclidean distance, x ∈ E, and f is a monotonically
increasing function. The function f defines how the cost
of robots’ sensing depends on its distance to each sensing
location x. When f(x) = x2, each Wi of W is given
by Wi = {x | ∥x − qi∥ = mink=1,...,n ∥x − qk∥} [13].
We refer to Wi as a Voronoi partition, which is convex by
construction, and qi as the generation point of Wi,illustrated
in Figure 1.. When each qi is the weighted centroid of the
i-th Voronoi partition given by

q∗i =

∫
Wi

xϕ(x) dx∫
Wi

ϕ(x) dx
, (3)

the robot positions Q minimize H [13].
By applying Lloyd’s algorithm, coverage control sets the

control input for robot si to

ui = −kprop(qi − q∗i), (4)

where kprop > 0 is a positive gain. In this paper, we use the
control law in a discrete time manner, following this direction
at the maximum speed of the robot. The angular velocity uses
a bang-bang strategy, maximizing the angular velocity until
the robot is facing directly towards the goal q∗i . By following
this control law, the robots asymptotically converge to the
weighted centroids of their associated Voronoi partitions.
This still holds even when ϕ varies with time.

1Existing methods such as [8]–[11] can be used to extend our proposed
algorithms to non-convex, cluttered environments.

B. PHD Filter for MTT

In an MTT setting, a natural choice for ϕ(x) is to capture
the target density at each location x. This time-varying
density function can be estimated using any standard MTT
algorithms. In this paper, we use the PHD filter [14], as it
does not require any explicit data association.2

Dames [15] developed a distributed PHD filter in which
each robot maintains the PHD within a unique subset, Wi,
of the environment while ensuring the distributed filtering
scheme yields the same target estimation performance as its
centralized counterpart. Three algorithms then account for
motion of the robots (to update the subsets Wi), motion
of the targets, and measurement updates. In this paper, we
adopt the same strategy for each robot to locally maintain
its portion of the PHD.

III. OPTIMIZED SPACE PARTITION

We propose the novel normalized unused sensing capacity
in Section III-A, which will be used to quantify the sensor
heterogeneity. After that, two space partitioning algorithms
are developed based on power diagram (Section III-B) and
CCVD (Section III-C). Lastly, a control policy is proposed
in Section III-D to optimize robot poses given the space
partitioning schemes.

A. Normalized Unused Sensing Capacity

We assume that each robot si has a finite field of view
(FoV) Fi, which could be different across the sensors i.
Examples of Fi include a wedge shape for a camera (e.g.,
Figure 2) or a circle for a lidar. Let pd(x|qi, θi) denote the
probability of robot si at position qi and with orientation θi
detecting a target with state x ∈ E, which is the same model
as in the PHD filter. The robot cannot detect targets outside
its FoV Fi, i.e., pd(x|qi, θi) = 0 ∀x /∈ Fi. We assume that
pd is time-invariant in the robot’s local coordinate frame, but
we make no other assumptions about the shape of Fi or the
functional form of pd. In practice, pd can be estimated using
data-driven approaches [16] and/or prior knowledge of the
sensor model.

We define the total detecting capability of robot si as

Di =

∫
Fi

pd(x|qi, θi) dx, (5)

which depends on the size of Fi and the sensor’s ability to
detect information within Fi.

In this paper, we consider sensor heterogeneity in terms of
not only the sensing capability, such as FoV and detection
accuracy, but also its current usage to track targets. When
a sensor detects a target and starts to track it, the sensor’s
sensing capability will be reduced. We assume that we are
tracking targets of finite, possibly heterogeneous sizes that
cannot overlap, and that the region B occupied by the largest
target is much smaller than the sensor’s FoV. Therefore, for
a robot i, there exists some area B , whose area is that of

2We note that the overall framework presented in this paper can be easily
adapted to any other choice of Bayesian MTT tracker.

the smallest target, such that there is never more than one
target in B, i.e., max

∫
B v(x) dx = 1. Then

max

∫
B
pd(x|qi, θi)v(x) dx

≤ max

(
max
x∈B

pd(x|qi, θi)
)∫

B
v(x) dx

= max
x∈B

pd(x|qi, θi) ≊ pd, (6)

where the last approximate equality holds for small B, such
that pd is approximately constant over B. We can then write
robot si’s FoV as the union of disjoint regions, Bk, with the
above property, so that Fi = ∪kBk and Bi∩Bj = ∅, ∀i ̸= j.
Letting pd,k ≊ maxx∈Bk

pd(x|qi, θi), we then define robot
si’s maximum sensing capacity as

Cmax,i = µmax

∫
Fi

pd(x|qi, θi)v(x) dx

= µmax
∑
k

∫
Bk

pd(x|qi, θi)v(x) dx

≊ µ
∑
k

pd,k =
µ

|B|
∑
k

|B|pd,k

=
µ

|B|

∫
Fi

pd(x|qi, θi) dx =
µDi

|B|
, (7)

where Di comes from (5) and µ is a tuning parameter
associated with the maximum target density in the task space.
For instance, as the expected maximum distance between the
targets becomes larger, a smaller µ is selected to discount the
maximum sensing capacity of a sensor. Remark 1 discusses
the selection of µ in more detail.

The target detection probability at x is given by

pexp(x) = pd(x|qi, θi)pt(x|E), (8)

where pt(x|E) is the normalized PHD. Thus, the expected
number of target detections is given by

Cexp,i =

∫
Fi

pd(x|qi, θi)pt(x|Fi) dx

=

∫
Fi

pd(x|qi, θi)v(x) dx∫
Fi

v(x) dx
.

(9)

Definition 1 (Normalized Unused Sensing Capacity):
The relative normalized unused sensing capacity with
respect to the maximum target density for robot si, denoted
Ui, is given by

Ui = Cmax,i − Cexp,i

=

∫
Fi

(
µ

|B|
− v(x)∫

Fi
v(x) dx

)
pd(x|qi, θi) dx. (10)

Note that (10) can be easily modified by replacing v(x) with
a density function propagated via a different Bayesian filter.
The normalized unused sensing capacity quantifies current
capacity for a sensor to track targets. The larger the sensing
capability of a robot, the higher the number of targets it can
track. However, as the robot tracks an increasing number of
targets, its remaining sensing capability begins to decay.

Fig. 1. Comparison of a Voronoi diagram (black lines), a power diagram
(blue lines), and a CCVD (red curves and colored partitions). The darkness
of each generation point (gray-scale dot) corresponds to its weight, i.e.,
power radius, with darker points having higher weights. The three diagrams
converge to the same solution when the weights for all generation points
are identical.

Remark 1 (Choice of µ): The choice of µ is a free pa-
rameter. Setting it to a large value will make Cmax,i large
relative to Cexp,i, resulting in all robots having similar
unused capacities Ui. Picking µ = 0 will result in robots
only using the expected number of detections Cexp,i with no
acknowledgment of total capacity. When the target density
is unknown, we may choose µ = |B| corresponding to the
case where the robot detects the maximum possible number
of targets in its FOV. Otherwise, µ can be set as the ratio
of the estimated total number of targets and the quantity
|E|/|B|.

B. Power Diagram Implementation

To maximize the total detection probability of targets,
we control the robots, considering their heterogeneity in
spatial deployment. To this end, we optimize both space
partitioning and each sensor’s location within its assigned
partition. Unlike the Voronoi diagram, which is suitable for
the sensors with a homogeneous and isotropic sensing model,
power diagrams [17] are often used to compute the optimal
dominance regions when the team has heterogeneous sensing
models.

The power diagram is a variant of the standard Voronoi
diagram that uses the power distance,

f(∥x− pi∥) = ∥x− pi∥2 − ρ(si)
2, (11)

where ρ(si) is the weight or power radius of si, and pi is
the generation point. Figure 1 illustrates an example of the
power diagram. Existing power diagram-based approaches
utilized sensor positions as the generation points, pi, and the
radii of the sensor FoVs as the weights, ρ(si), to account for
sensor heterogeneity [11], [18]. However, these approaches
are limited to isotropic sensors. On the other hand, our
approach extends to heterogeneous anisotropic sensors.

We utilize the normalized unused sensing capacity Ui to
set the power radius in (11). This is a novel strategy to
account for the heterogeneity in computing the dominance
regions. To achieve this, we proceed by expressing the
optimization functional (2) as

Hp(Q,W) =

n∑
i=1

∫
Wi

(
∥x− pi∥2 − g(Ui)

2
)
ϕ(x) dx, (12)

where g : R → R is a mapping from the unused sensing
capacity to the power radius. Since the normalized unused
sensing capacity has units of area, we choose g such that
the resulting power radius, g(Ui), is equal to the radius of
a perfect (i.e., pd = 1) isotropic sensor with the same total
detecting capability, Di, i.e., πg(Ui)

2 = Ui. Therefore we
have

g(Ui) =

√
Ui

π
. (13)

Existing methods based on the power diagram, such as
[11], [18], [19], assume that the sensor’s detection probability
at x in its assigned power partition is a non-increasing
function of the distance from x to the sensor. In other words,
the location of a sensor is the location that maximizes its
detection probability of targets in its power partition. Thus,
it makes sense that they use the sensor location as the
generation point, i.e., let pi = qi. However, this no longer
holds true for anisotropic sensors.

Instead, we find the weighted centroid of the detection
probability as

qcod,i =

∫
Fi

xpd(x|qi, θi) dx∫
Fi

pd(x|qi, θi) dx
, (14)

which we call the centroid of detection (COD). We use COD
as the generation points for our power diagram, i.e., pi =
qcod,i.3 Thus, the power partition of each robot becomes

Wi = {x | i = argmin
k=1,...,n

(∥x− qcod,k∥2 − g(Uk)
2)}. (15)

Remark 2: For given Fi and pd of a robot si, we can
use (5) to find an equivalent isotropic set F ′

i satisfying∫
F ′

i
pd(x|qi, θi) dx = Di. This will map an arbitrary sensor

model, characterized by Fi and pd, to a perfect isotropic
sensor, characterized by a circular F ′

i with pd(x) = 1 ∀x ∈
F ′
i . By choosing the appropriate mapping of the normalized

unused sensing capacity g(Ui), the weighted center of detec-
tion qcod,i and the total sensing capacity Di are preserved as
those of the original sensor model. Hence, the power radii
of different sensors can be used to compare the sensors’
unused sensing capacities and the task spaces they should
be assigned.

C. Capacity-Constraint Voronoi Diagram Implementation

The capacity-constraint Voronoi diagram (CCVD) [20],
visualized in Figure 1, computes the optimal task space
assignment with the weight of each generation point as a hard
constraint and yields closed-form optimal space partition
in a discrete space. This is done by two steps: initial cell
assignment and cell swapping. 1) Firstly, the task space
is segmented into a finite set of regular grid cells X =
{x1, · · · , x|X|}, where each cell is identified by its center
xi. The ith cell is indexed by X[i]. Then, we conduct an
initial cell assignment satisfying a capacity constraint which
specifies the maximum number of cells that can be assigned

3Note that for an isotropic sensor the COD will be the same as the sensor
position.

Algorithm 1: Distributed Initialization (Single Robot
si in One Iteration)

Input : Ui, X,∆t
Output: W0

i

1 Initialize Ucap,i ← |X|/n and set Ĩi ← Ucap,i/Ui

2 Find the neighbor set Ni

3 Update Ĩi using

Ĩi ← Ĩi +
∑
j∈Ni

(Ĩj − Ĩi) (18)

until time ∆t is up
4 Compute Ucap,i using Equation (17)
5 W0

i ← {X[(i− 1) · Ucap,i + 1], . . . , X[i · Ucap,i]}
▷ Assign a unique portion of grids to si

to each generation point. 2) Secondly, we iteratively revise
the cell assignment to minimize the total cost defined by∑
x∈X

f(∥x−A(x)∥) =
∑
x∈X

∥x−A(x)∥2 −
∑
x∈X

ρ(A(x))2,

(16)
where A(x) is the generation point assigned to x ∈ E,
f(·) is a monotonically increasing function as introduced
in (2), and ρ(·) denotes the weight of a generation point
as introduced in (11). The right-most term in (16) is a
constant for all assignments, and can therefore be omitted.
The cell assignment minimizing (16) results in a discrete
power diagram where the number of cells in each power
partition is equivalent to the capacity of its generation point.

1) Initial Cell Assignment: To implement the CCVD in
the robot task assignment, E is segmented into |X| cells
such that the size of each cell equals the maximum size of
an individual target. To take the sensor heterogeneity into
consideration, we associate the capacity of each robot si,
i.e., the number of cells assigned to si, denoted by Ucap,i,
with its normalized unused sensing capacity Ui. Therefore,
we normalize Ui to Ucap,i by selecting a constant I

Ucap,i = I · Ui, ∀i = 1, . . . , n (17)

at each discrete time step such that
∑

i=1,...,n Ucap,i = |X|
and round Ucap,i to an integer. Similar to Section III-B, we
use qcod,i, i.e., COD of each robot, as the CCVD generation
points instead of robot’s locations. The initialization step
requires all robots to synchronize I in order to find Ucap,i
through (17) in a distributed manner. To achieve that, a
distributed consensus protocol [21] is applied as outlined in
Algorithm 1. Initially, an equal number of cells is assigned
to each robot si to compute a temporary constant Ĩi. Then
the robots reach a consensus on Ĩi = I via Equation (18) to
determine Ucap,i using (17) distributedly.

2) Recursive Cell Assignment: The original CCVD is
constructed by iteratively swapping the cell assignment to
all generation points, which is computationally expensive
since each of the cells needs to be examined for the optimal
assignment. In contrast, the enhanced approach by [22]
reduces the computational complexity without compromising

the quality of the point distribution, by allowing a more effi-
cient assignment strategy called median site swap, leading to
faster convergence and lower time complexity. To illustrate,
the median site swap method focuses on finding an optimal
cell τ as a distance reference to re-assign cells between the
two robots si, and sj , without the need to examine every
cell.

We propose a distributed cell assignment algorithm, out-
lined in Algorithm 2, based upon [22, Algorithm 3]. Initially,
an indicator stablei is set to false for a robot si, indicating
that the robot has not been assigned the best set of cells
that minimizes (16). Then the robot compares its ID with
those of other robots from its neighbor set. It performs the
computation of cell assignment for the neighbors with greater
IDs by updating the assignment as outlined in Lines 4-17,
while requesting updates to its capacity from neighbors with
smaller IDs, as outlined in Line 18.

As an example, consider two robots si, sj with i < j.
A serving robot si requests the capacity and the position
from its served neighbor sj to conduct cell assignment,
demonstrated as follows. For this pair of neighboring robots,
we aim to minimize the cost given by

∆e(x, qcod,i, qcod,j) := ∥x− qcod,i∥ − ∥x− qcod,j∥. (19)

In Lines 7-9, we calculate the cost defined in (19) for robot
si to cover a cell and store it as a key in an array Pij .
Then, we need to find the optimal Ucap,j cells out of the total
(Ucap,i + Ucap,j) to assign for robot sj in order to minimize
the cost, while assigning the rest to robot si. This is done in
Line 10 by finding a cell τ which only allows Ucap,j cells to
have ∆e(xk, qcod,i, qcod,j) < ∆e(τ, qcod,i, qcod,j). Physically,
the cell τ is the median cell, i.e., the cell with the median
∆e value, of all cells assigned to both robots si and sj . After
finding τ , any cell that costs less than the cell τ is assigned
to robot sj ; otherwise it is assigned to robot si as outlined in
Lines 11-15. Lines 16 and 17 keep track of the convergence
of the assignment, which occurs when τ remains unchanged
from the previous iteration. On the other hand, the served
robot sends its capacity and position to its serving neighbor
to request its assignment Wi, outlined in Lines 20-22.

One may notice that Algorithm 2 yields uneven compu-
tational workload at each robot. In particular, robots with
smaller IDs take on more computation tasks for the cell
assignment than those with larger IDs. In practice, one
can assign smaller IDs to robots with higher computational
resources.

D. Optimized Poses

Once the optimized partition is retrieved, each robot must
move to its optimized pose to improve the detection prob-
ability. By adopting the same analytical approach presented
in [13], we can compute the partial derivative of Hp(Q,W)
with respect to qcod,i as

∂Hp(Q)

∂qcod,i
= 2MWi(qcod,i − CWi), (20)

where MWi
and CWi

are the mass and center of mass
associated with the region Wi, respectively, defined as

MWi =

∫
Wi

ϕ(x) dx,

CWi
=

1

MWi

∫
Wi

xϕ(x) dx.

(21)

Thus, as qcod,i is recursively driven to CWi , the partial
derivative approaches 0, and thus the sensing capacity of
si in Wi is optimized. The control inputs in (1) for si are
then given by

ui = ∥CWi − qcod,i∥(dt)−1,

∆θ = ang(CWi − qcod,i)− θi,

ωi =|∆θ|(dt)−1sgn(∆θ − θi),

(22)

where ang(·) denotes the angle of a position vector in the
global frame and dt is a small time step.

Algorithm 3 outlines the distributed control algorithm for
each robot. While the MTT task is not completed ((indicated
by the condition active), at each time step, the robot first finds
the optimized partition using one of the approaches explained
in Sections III-B and III-C, and maintains the PHD within its
partition using the same strategy as in [15], which requires
the exchange of local PHD with its neighbors. Then, the
robot computes its control using (22).

IV. SIMULATION RESULTS

We conduct simulations using both ROS and MATLAB
to validate our proposed multi-robot multi-target tracking
framework. For concise presentation, all simulations adopt
sensors with wedge-shaped FoVs whose shape is parame-
terised by a viewing angle Θi in the forward direction, which
is the same as the orientation of a robot, and a radius Li.
Cameras and lidars can be modeled using such FoV shapes.
Two examples are visualized in Figure 2. The probability of
target detection for these FoVs is defined by

pd(x|qi, θi) =

{
fd,i(∆L) if x ∈ Fi

0 otherwise,
(23)

where ∆L = ∥x − qi∥, and fd,i(∆L) is the probability
density function that assigns the target detection probability
given the distance ∆L between the target and robot si.
Specific implementations of fd,i used in simulations are
provided in Table I.

A. Performance Metrics

To assess the tracking performance, we use the first order
Optimal SubPattern Assignment (OSPA) metric [23], which
is a widely-adopted metric to evaluate the performance of
MTT approaches. Given two sets X and Y (representing
the true and estimated target locations), the tracking error is

Algorithm 2: Distributed Cell Swapping (Single Robot si in One Iteration)

Input : W0
i , X

Output: Wi

1 stablei ← false
2 Find the neighbor set Ni

3 for each robot sj ∈ Ni with ID j do
4 if i < j then
5 while stablei = false do
6 Request W0

j , qcod,j from sj ▷ Robot with smaller ID (serving robot) requests data from the other (served
robot) and computes the partitions for both

7 Initialize an array Pij ▷ For storing cells and their costs, i.e., keys
8 for each cell xk ∈ {W0

i ,W0
j } do

9 Insert xk into Pij with ∆e(xk, qcod,i, qcod,j) as its key

10 Find τ ∈ Pij so that only Ucap,j cells have ∆e(xk, qcod,i, qcod,j) < ∆e(τ, qcod,i, qcod,j)
11 for each cell xk ∈ Pij do
12 if ∆e(xk, qcod,i, qcod,j) < ∆e(τ, qcod,i, qcod,j) then
13 Assign xk to Wj ▷ Assign the cell to sj if it costs less than the median cell

14 else
15 Assign xk to Wi ▷ Otherwise, assign it to si

16 if τ unchanged from last iteration then
17 stablei ← true ▷ Reach the steady state and terminate

18 Send Wj to sj ▷ Serving robot sends updated partition to the served robot

19 else
20 Send W0

i , qmax,i to sj ▷ Robot with larger ID (served robot) sends data to the other (serving robot) and waits
for the updated partition

21 Request Wi from sj
22 W0

i ←Wi ▷ Update the inputs for the next iteration

Algorithm 3: Distributed Control (Single Robot si)

1 while active do
2 Find optimized space partition Wi using

Algorithms 1 and 2
3 Update ϕ(x) = vt(x) for x ∈ Fi

4 Send ϕ(x), x ∈ Fj to neighbors for all
{sj | Fi ∪Wj ̸= ∅}

5 Receive ϕ(x), x ∈ Wi from neighbors for all
{sj | Fj ∪Wi ̸= ∅} and compute CWi

via (21)
6 Execute control ui and ωi via (22)

defined as4

d(X,Y) =(
1

n
min
π∈Πn

(
m∑
i=1

dc(xi, yπ(i))
p + cp(n−m)

))1/p

. (24)

4Without loss of generality, we assume that |X| = m ≤ |Y | = n
holds. In other words, X represents either the true or estimated target set,
whichever is smaller.

(a) Type 1 (b) Type 2
Fig. 2. Two types of sensors used in the simulations. Type 1 and type 2
have viewing angles of 45◦ and 240◦, respectively. Black squares represent
the location of sensors. The viewing angles, radii, and forward directions
of both FoVs are indicated in the figures.

The constant c is a cutoff distance, dc(x, y) = min(c, ∥x −
y∥), and Πn is the collection of all permutations of the set
{1, 2, . . . , n}. The larger the value of p is, the more the
outliers are penalized. Equation (24) computes the average
matching error between the true and estimated target loca-
tions considering all possible assignments between elements
x ∈ X and y ∈ Y that are within distance c. Note that the
lower the OSPA value, the more accurate the tracking of the
targets.

B. Qualitative Results

First, we apply the CCVD implementation and show the
result from a single run using 5 TurtleBot3 Burger differen-

TABLE I
TURTLEBOT3 SENSORS

Types
Specs Θi

(deg)
Li

(m) fd,i(∆L) Cmax

1 270 3 0.99− 0.1 ·∆L 1.675
2 360 3 0.99− 0.067 ·∆L 2.422
3 90 3 0.99 0.700
4 90 2.5 0.99− 0.1 ·∆L 0.404
5 360 2 0.99 1.257

tial drive robots, namely s1, . . . , s5, tracking 40 holonomic
moving targets in a 10m × 10m obstacle-free square task
space. The simulation was implemented using Ubuntu 18.04
with ROS Melodic. The robots move at a maximum linear
velocity of 0.2m/s and a maximum angular velocity of
1 rad/s, and they are able to localize themselves using
position data retrieved from ROS topic /odom , i.e., the
ground truth state from Gazebo. Our MR-MTT algorithm
recursively generates next waypoints for the robots, and they
navigate through the waypoints using the move base ROS
package which uses the dynamic window approach (DWA)
as a local planner and Dijkstra’s algorithm as a global planner
[24].

All robots are equipped with heterogeneous range-bearing
sensors with specifications described in Table I. The standard
deviation of range and bearing measurements for all sensors
is 0.04 m and 0.1◦, respectively. Since target density is low
relative to the size of E and the FoV of robots, we select
µ = 0.1 in (7) for all robots. The task space is discretized
into 50×50 cell for both PHD representation and task space
assignment. We assume that only one target can occupy each
0.2m× 0.2m cell.

As explained in Section I, an important application of the
MR-MTT algorithm is in tracking targets to study collective
behaviours of animal groups and crowd dynamics of pedestri-
ans. Motivated by related works in modeling their collective
motion [25], we apply the Boids algorithm, which has
been used to study the emergent flocking behaviors arising
in social animal groups from combinations of separation,
alignment, and cohesion behaviors, to simulate the moving
targets.

In our simulations, a target may exit the task space in
which case another target will immediately enter into the
space to maintain a constant number of targets. Targets move
at a maximum speed of 0.2m/s.

The robots begin with a uniform PHD where we
set the expected number of targets equal to 1 over
the entire task space, meaning that they have no
prior knowledge of the target density distribution.
Due to space limitations, one could refer to the
video at https://www.bilibili.com/video/
BV1NfbqzzExg/?share_source=copy_web&vd_
source=b97d1279b1101140ca7fef9ec1c9dcd4
for experimental results. The results demonstrate that our
algorithm guides the robot to explore the task space when no
targets are detected and to maintain coverage of the majority

TABLE II
TYPES OF HETEROGENEOUS SENSORS

Types
Specs Θi

(deg)
Li

(m) fd,i(∆L) Cmax

A 45 8 0.99 24.88
B 45 8 0.7 17.59
C 240 8 0.99 134.04
D 270 11.3 0.99 300.86
E 270 16 0.99 603.17

TABLE III
NETWORK COMPOSITIONS

Comp
Type A B C D E C(S) L(S)

S1 6 18 12 - - 2074.4 3.7
S2 8 24 16 - - 2765.8 3.7
S3 10 30 20 - - 3457.3 3.7

of detected targets when the robot detects multiple targets
moving in different directions. When a robot detects a small
number of targets moving in about the same direction, the
robot follows those targets. When a robot detects multiple
targets moving in different directions, it chooses to follow
the targets that are within its assigned cells and reallocates
the task of tracking other targets to its neighboring robots
as the targets move into their cells.

C. Quantitative Results

To quantitatively compare the efficacy of our power di-
agram (Section III-B) and CCVD (Section III-C) based
method with baseline algorithms, we run batches of simula-
tion trials in MATLAB using a point robot whose dynamics
are given in (1). In order to demonstrate the effectiveness
of our two novel algorithms and to perform ablation exper-
iments, we compare them to three other methods. All five
methods are summarized below:

1) Zigzag (Z) Method: This method utilizes a zigzag
complete coverage path planning framework [7], a
standard approach for target search.

2) Voronoi (V) Method: Partitioning the space using
Voronoi diagram with robot locations as generator
points, similar to Dames’ method [15].

3) Voronoi-COD (VC) Method: Similar to Voronoi
method, except that the robots’ CODs are the generator
points.

4) Power-COD (PC) Method: Our first proposed method,
i.e., partitioning the space using power diagram with
robot CODs as generator points.

5) CCVD-COD (CC) Method: Our second proposed
method, i.e., partitioning the space using CCVD with
robot CODs as generator points.

In these simulations, the size of the environment E is
100m× 100m. Robots move at a maximum linear velocity
of 2m/s and a maximum angular velocity of 2 rad/s. Each
robot carries one of the five sensor types, as outlined in
Table II. Assuming that the target density within the FoVs

(a) 36 Robots (S1) (b) 48 Robots (S2) (c) 60 Robots (S3)
Fig. 3. Boxplots showing the median and the 25th and 75th percentiles of average OSPA error for each test configuration. Magenta, red, blue, green, and
black boxplots show results of Zigzag (Z) method, Voronoi (V) method, Voronoi-COD (VC) method, Power-COD (PC) method, and CCVD-COD (CC)
method, respectively. Figure 3a, 3b and 3c show results of network size 36 (S1), 48 (S2), and 60 (S3) respectively. Each figure shows results for a robotic
network of a certain size that tracks 30, 40, or 50 moving targets, respectively, from left to right.

of sensors is completely unknown, we select µ = 1 in (7)
for all robots in all trials.

Initially, there are 30, 40, or 50 targets within the envi-
ronment. We compare three different network compositions,
S1, S2, and S3, each of which is composed of the same
sensor types in equal proportions, as shown in Table III. By
varying the number of targets and the network compositions,
we create 9 different simulation trials. Each trial is repeated
for 10 times using the five algorithms, each lasting for 700 s.
The robots and targets are randomly located in the task space
at the beginning of each trial.

Figure 3 shows the results of the nine trials. We plot the
median and the 25th and 75th percentiles of average OSPA
via boxplots using the data collected during the last 400 s of
each trial to present the steady state tracking performance.
Note that larger networks perform better at target tracking.
Consistently, the CCVD methods (CC) outperform the power
diagram (PC) and Voronoi diagram methods (V and VC)
across different team sizes and target numbers. This confirms
the improved efficacy of our proposed CCVD methods,
especially for heterogeneous sensing networks. The CCVD
and power diagrams assign larger regions to the sensors
with higher unused sensing capacity and smaller regions
to those who have smaller unused sensing capacity. The
CCVD places a hard constraint, i.e., the capacity constraint,
on the size of the partition depending on each robot’s
workload. Hence it demonstrates a further improvement in
the tracking performance over the power diagram, which
instead utilizes an approximation scheme which associates
the unused sensing capacity of a robot with a power radius
in space partition. As a result, sensing networks can take
advantage of their heterogeneous sensing capabilities and
avoid overloading sensors with target tracking tasks.

Moreover, from Figure 3, it can be seen that VC method
consistently yields a significantly lower OSPA error than
V method, and that PC method significantly outperforms
VC method in most of the simulation trials. This reveals
that both replacing robot locations with CODs as generator
points and applying the capacity-constraint space partitioning

strategies contribute to the tracking accuracy, leading to the
superior performance by PC and CC methods. We also find
that PC and CC methods significantly improve the tracking
accuracy compared to Z method, indicating that our proposed
algorithms produce more effective multi-robot path planning
results for heterogeneous teams to track multiple unknown
moving targets.

Remark 3 (Trade-off between algorithms): The
MATLAB simulations were conducted on a Windows
11 laptop with 13th Gen Intel(R) Core(TM) i7-1360P
2.20GHz processor and 32GB RAM storage memory.
Taking the simulations of 60 robots as an example, the
average running time of Algorithm 3 using PC method
is approximately 0.1 s per iteration, while running time
of using CC method is around 9.0 s per iteration. At the
expense of running time, CC method reduces OSPA error by
around 20% compared to PC method. Practitioners should
make a trade-off between the two algorithms according to
the availability of computing resources and the requirement
of tracking accuracy.

V. CONCLUSIONS

We propose a distributed coverage control scheme for
heterogeneous mobile robots with onboard sensors to track
an unknown and time-varying number of targets. This novel
strategy allows sensors to have arbitrary sensing models
(with limited fields of view) and dynamically optimizes the
workload for each individual. To do this, we introduce the
NUSC to quantify the instant detection capability of each
sensor. We then use this to construct either a PD or a CCVD
to recursively find optimized sensor locations as measure-
ments are updated. The centroid of detection for each sensor
is utilized as the generation point to create the partitions,
allowing each sensor to center its field of view on the
area with the highest information density. Simulation results
indicate that our method yields better and more reliable
tracking performance compared to baseline algorithms that
do not account for heterogeneity.

REFERENCES

[1] H. E. MacGregor, J. E. Herbert-Read, and C. C. Ioannou, “Informa-
tion can explain the dynamics of group order in animal collective
behaviour,” Nature communications, vol. 11, no. 1, p. 2737, 2020.

[2] P. DeLellis, G. Polverino, G. Ustuner, N. Abaid, S. Macrı̀, E. M. Bollt,
and M. Porfiri, “Collective behaviour across animal species,” Scientific
reports, vol. 4, no. 1, p. 3723, 2014.

[3] L. Gómez-Nava, R. Bon, and F. Peruani, “Intermittent collective
motion in sheep results from alternating the role of leader and
follower,” Nature Physics, pp. 1–8, 2022.

[4] M.-C. Chuang, J.-N. Hwang, J.-H. Ye, S.-C. Huang, and K. Williams,
“Underwater fish tracking for moving cameras based on deformable
multiple kernels,” IEEE Transactions on Systems, Man, and Cybernet-
ics: Systems, vol. 47, no. 9, pp. 2467–2477, 2016.

[5] P. Scovanner and M. F. Tappen, “Learning pedestrian dynamics from
the real world,” in 2009 IEEE 12th International Conference on
Computer Vision. IEEE, 2009, pp. 381–388.

[6] M. Adnan, G. Slavic, D. M. Gomez, L. Marcenaro, and C. Regazzoni,
“Systematic and comprehensive review of clustering and multi-target
tracking techniques for LiDAR point clouds in autonomous driving
applications,” Sensors, vol. 23, no. 13, p. 6119, July 2023. [Online].
Available: https://doi.org/10.3390/s23136119

[7] M. Torres, D. A. Pelta, J. L. Verdegay, and J. C. Torres, “Coverage path
planning with unmanned aerial vehicles for 3d terrain reconstruction,”
Expert systems with applications, vol. 55, pp. 441–451, 2016.

[8] J. M. Palacios-Gasós, Z. Talebpour, E. Montijano, C. Sagüés, and
A. Martinoli, “Optimal path planning and coverage control for multi-
robot persistent coverage in environments with obstacles,” in 2017
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2017, pp. 1321–1327.

[9] S. Bhattacharya, R. Ghrist, and V. Kumar, “Multi-robot coverage
and exploration on Riemannian manifolds with boundaries,” The
International Journal of Robotics Research, vol. 33, no. 1, pp. 113–
137, 2014.

[10] A. Breitenmoser, M. Schwager, J.-C. Metzger, R. Siegwart, and
D. Rus, “Voronoi coverage of non-convex environments with a group
of networked robots,” in 2010 IEEE International Conference on
Robotics and Automation. IEEE, 2010, pp. 4982–4989.

[11] L. C. Pimenta, V. Kumar, R. C. Mesquita, and G. A. Pereira, “Sensing
and coverage for a network of heterogeneous robots,” in 2008 47th
IEEE Conference on Decision and Control. IEEE, 2008, pp. 3947–
3952.

[12] W. Luo and K. Sycara, “Voronoi-based coverage control with connec-
tivity maintenance for robotic sensor networks,” in 2019 International
Symposium on Multi-Robot and Multi-Agent Systems (MRS). IEEE,
2019, pp. 148–154.

[13] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control
for mobile sensing networks,” IEEE Transactions on robotics and
Automation, vol. 20, no. 2, pp. 243–255, 2004.

[14] R. Mahler, “Phd filters of higher order in target number,” IEEE
Transactions on Aerospace and Electronic systems, vol. 43, no. 4,
pp. 1523–1543, 2007.

[15] P. M. Dames, “Distributed multi-target search and tracking using the
phd filter,” Autonomous robots, vol. 44, no. 3-4, pp. 673–689, 2020.

[16] P. Dames and V. Kumar, “Experimental characterization of a
bearing-only sensor for use with the phd filter,” arXiv preprint
arXiv:1502.04661, 2015.

[17] F. Aurenhammer, “Power diagrams: properties, algorithms and appli-
cations,” SIAM Journal on Computing, vol. 16, no. 1, pp. 78–96, 1987.

[18] O. Arslan and D. E. Koditschek, “Voronoi-based coverage control
of heterogeneous disk-shaped robots,” in 2016 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2016, pp.
4259–4266.

[19] A. Kwok and S. Martinez, “Deployment algorithms for a power-
constrained mobile sensor network,” International Journal of Robust
and Nonlinear Control: IFAC-Affiliated Journal, vol. 20, no. 7, pp.
745–763, 2010.

[20] B. Michael and H. Daniel, “Capacity-constrained voronoi diagrams
in finite spaces,” in Int’l Symp. on Voronoi Diagrams in Science and
Engineering, vol. 33, 2008, p. 13.

[21] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and
cooperation in networked multi-agent systems,” Proceedings of the
IEEE, vol. 95, no. 1, pp. 215–233, 2007.

[22] H. Li, D. Nehab, L.-Y. Wei, P. V. Sander, and C.-W. Fu, “Fast capacity
constrained voronoi tessellation,” in Proceedings of the 2010 ACM
SIGGRAPH symposium on Interactive 3D Graphics and Games, 2010,
pp. 1–1.

[23] D. Schuhmacher, B.-T. Vo, and B.-N. Vo, “A consistent metric for
performance evaluation of multi-object filters,” IEEE Transactions on
Signal Processing, vol. 56, no. 8, pp. 3447–3457, 2008.

[24] K. Zheng, “Ros navigation tuning guide,” Robot Operating System
(ROS) The Complete Reference (Volume 6), pp. 197–226, 2021.

[25] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral
model,” in Proceedings of the 14th annual conference on Computer
graphics and interactive techniques, 1987, pp. 25–34.

