Scalable and Expert-guided Reinforcement Learning-based Autonomous
Robot Exploration

Yuhong Cao, Yizhuo Wang, Jingsong Liang, Guillaume Sartoretti

Abstract—This work further pushes the boundary of
learning-based methods in autonomous robot exploration in
terms of scalability and exploration efficiency. In particular,
we focus on ground robot autonomous exploration with om-
nidirectional 3D-LiDAR. In this work, we present HEADER,
an attention-based reinforcement learning approach with hi-
erarchical graphs for efficient exploration in large-scale envi-
ronments. HEADER follows existing conventional methods to
construct hierarchical representations, but further designs a
novel community-based algorithm to efficiently partition the
dense local graph into the shape-adaptive global graph. Lever-
aging a guidepost design to incorporate the global reference
path into local decisions, we further empower our attention-
based model to better capture dependencies during exploration
to produce near-optimal exploration behaviors. While existing
learning approaches all train models with handcrafted but
biased rewards, we propose a parameter-free privileged reward
that strictly aligns with the exploration objective. In the ex-
periments, HEADER demonstrates better scalability than most
existing learning and non-learning methods, while achieving
significant improvement in exploration efficiency over the state-
of-the-art baselines.

I. INTRODUCTION

In autonomous exploration considered in this work, a
mobile ground robot is tasked with exploring and mapping
an unknown environment as fast as possible. By planning and
executing an exploration path, the robot classifies unknown
areas into free or obstacle areas based on its accumulated
sensor measurements. In this work, we focus on tasks where
a ground robot is equipped with an omnidirectional 3D Li-
DAR to obtain long-range, low-noise, and dense point cloud
measurements. Recent advancements in LiDAR odometry
have enabled accurate and robust localization and mapping
at the scale of thousands of meters [1]-[3], allowing recent
planners to focus on exploring the environment without
concerns about the mapping accuracy [4]-[9]. Despite this,
few existing planners support exploration in large-scale and
complex environments [5], [10], due to the complexity that
comes with long-term, real-time path planning requirements.
That is, to achieve efficient exploration, the planner must
actively react to belief and map updates at a high frequency
by re-evaluating the full partial belief and replanning a long-
term, non-myopic exploration path.

Reasoning about such a large-scale map at full resolution
and at a high frequency is an impossible mission. Therefore,
most recent advanced large-scale exploration planners rely on
hierarchical planning [4], [5], [8], [9], [11], which decouples
the exploration path into a low-resolution global path with
coarse inference on the full belief and a high-resolution
local path with fine reasoning on the nearby local belief.

. . Unexplored/explored Global Node

@® @ Utility/Non-utility Local Node

Global Edge — Local Edge

Fig. 1. An example hierarchical graph constructed by HEADER during
exploring our campus. While dense local nodes keep expanding to cover
all traversable areas, our planner adaptively and incrementally partitions
these local nodes (bounded by the blue box as the local range) into global
nodes to generate the global reference path. Based on the local graphs and
the global path, our trained model selects a neighboring node as the next
waypoint (denoted as the purple ball) to visit.

The insight of hierarchical planning is that fine reasoning is
most effective in nearby areas, while less detailed inference
is sufficient for utility far away. Given that the global path
may change significantly after the local belief is updated, hi-
erarchical planning offers a good balance between scalability
and planning quality. We note that how sparse the global
representation is determines the scalability of exploration
planning [5], [10]. Existing methods [5], [9] often rely on
a predefined global resolution, which makes them sensitive
to this parameter: high resolutions will reduce planning
efficiency, while low resolutions risk failing to fully cover
the belief space.

Learning-based methods are intuitively promising to tackle
exploration since they take advantage of predicting future
states (i.e., unknown areas) based on previous experience,
instead of only relying on current states (i.e., the current
free areas) like conventional planners. However, existing

’ \
' \

I
I I
I 1
I I
1 I
I I
I I
1 I
I I
1 /]
_ _______________ _/,

o
B .
P —

Step 2: Update Map and Hierarchical Graph

Step 3: Update Observation

- ————————

Step 4: Output Attention-based Policy

Fig. 2. The working flow of HEADER. We first classify the sensor scan into free and obstacle point clouds, which are used to build the current map of
the environment. Then we construct the community-based hierarchical graph to generate the graph observation as the input of the trained neural network.
After that, our attention-based decision model outputs the next waypoint for the robot to follow and get new measurements.

learning-based works have yet to explore how to integrate
with hierarchical planning, since most existing learning-
based planners still struggle to achieve good performance
(i.e., exploration rate, makespan, and sim-to-real robustness)
in small/local-scale exploration [12]-[16]. As a result, the
scalability and exploration efficiency of existing learning-
based planners are still far from matching the conventional
state-of-the-art methods.

In this work, we further push the boundary of learning-
based robot exploration by integrating our attention-based
planner with hierarchical graphs and tackling the reward bias
issue, making our planner the first learning-based approach
that achieves better scalability and exploration performance
than the state-of-the-art conventional planners. In particular,
we introduce HEADER, which substantially extends our
previous work [17], [18] by: (1) enabling powerful scal-
ability through a novel global graph representation based
on community detection [19]; (2) enhancing the model’s
long-term reasoning ability through guidepost features; (3)
significantly improving its exploration performance through
a privileged expert training paradigm. We first propose a
global graph construction method to enable efficient global
planning, which can incrementally generate shape-adaptive
subregions for arbitrary structures without parameter tuning.
Novelly, our method leverages community detection [19]
to adaptively partition the dense graph into global sub-
regions by identifying clusters of nodes with high intra-
community connectivity and structural cohesiveness [20].
Then, we design guidepost features as part of the attention
decision network’s inputs. Our guidepost features contain a
set of local and global reference paths. Those guideposts
not only enhance the long-term reasoning performance in

complex environments but also integrate global paths into our
attention-based local decisions to scale up with hierarchical
planning. Last but not least, we propose the privileged expert
training paradigm to tackle the sparse reward problem. At
each training step, by allowing an expert planner to access the
full environment, we compute an optimal coverage path from
the current position. The reward is calculated based on the
Euclidean distance between the privileged expert action and
the action planned by the network, which constantly provides
dense feedback for actions in arbitrary environments.

Through these novel contributions, HEADER demon-
strates state-of-the-art exploration efficiency (on average 20%
higher than the second-best planner [5] in the benchmark
tests) and scalability (completing exploration in large-scale
environments where most recent open-sourced planners [6],
[71, [9] fail). We validated HEADER in multiple outdoor
and indoor simulation benchmarks, as well as on hardware
in real-life scenarios, including a 300m x 230m outdoor
environment, where HEADER drives a wheeled robot to
travel over 1.5 kilometers to explore over 60,000m? of our
campus.

II. PROBLEM FORMULATION

Let M C R? be the current map/belief of the en-
vironment to be explored. Define My... C M as the
known free/traversable space, M,,s C M as the known
obstacle/occupied space, and M,z C M as the unknown
space. We then define My,.,, C M as the frontier, the
boundary between free space and unknown space. At each
decision step t, the ground mobile robot plans and visits
the next waypoint wy € M. in the traversable space
to observe the environment. The newly perceived unknown
space by an omnidirectional Lidar with a sensor range

(a) Global Graph

(b) Node Utility

Fig. 3.

(c) Local Guidepost (d) Global Guidepost

An example of the community-based hierarchical graph constructed by HEADER. The purple dot indicates the robot’s current position, while

the green square outlines the local graph region. Small dots denote local nodes, and blue squares indicate global nodes. The blue paths denote the global
edges, and the red path is the planned global path. In Fig. @ the colors of local nodes represent their community memberships. In Fig. @ the colors
reflect node utilities. Fig. @ and [3d] highlight the selected local and global guideposts, respectively. The local guideposts denote paths to all utility nodes,

and the global guideposts denote paths to the next global node.

dsensor, Will be classified as free space or occupied space
based on the traversability. We denote the executed trajectory
as ¢ = [po,p1,...,pt], Vpi € Myree, Where p; denotes the
position visited by the robot. We consider the exploration
tasks as completed when no frontiers are remaining, such
that M ¢ron, = (). The objective is to minimize the cost of
the executed path to complete the exploration:

¢* = argmin C(¢)), s.t. Mypon =0, 1)
hew
where 1)* is the optimal exploration path, C : 1) — R maps
a trajectory to its length, and W is the space of all feasible
exploration paths.

III. METHODOLOGY

In this section, we detail the working flow of HEADER
(see Fig.) and the training paradigm. We first uniformly
distribute candidate viewpoints in the free space and connect
each viewpoint with its collision-free neighbors to construct
a local graph that densely covers the current traversable
space. We then run the community detection algorithm to
incrementally and adaptively partition the local graph to
construct the global graph (see Fig. [3a). Based on the global
graph, we generate a global reference path by solving a
TSP problem to visit all unexplored global nodes. After
that, we formulate an informative graph that enhances the
nearby local graph with frontier information (see Fig. [3b)
and reference paths (see Fig. Bd] and [Bc). Finally, we input
this informative graph into our attention-based network (see
Fig. [), which selects one of the neighboring viewpoints as
the next waypoint to visit.

A. Community-based Hierarchical Graph

1) Local Graph: We first construct a full dense graph
Gq = (V4,E4) by incrementally and uniformly adding
candidate viewpoints/waypoints at node resolution A, ,qe
in the free space. The node set is defined as V; =
{v1,v2, .., v}, Y03 = (24,Y5) € Mfpee. For each viewpoint
v;, we identify its neighboring viewpoints through line-of-
sight checking (i.e., the distance between two viewpoints

is within a threshold d,, and the straight line between
them lies entirely in the free space). The neighboring
connections formulate a set of collision-free edges F; =
{(v1,v2), ..y (Un—1,) }. At each decision step ¢, we define
the robot node wv.,, as the nearest node to the robot’s
current position p;. Then we define a djocq; X djocqr sliding
window W centered at v.,, and construct the local graph
G; = (V,,), where the local node set V; C V, contains all
candidate nodes within H, and the local edge set F; C Fy
includes all edges between nodes in V.

2) Global Graph: Leveraging the Leiden algorithm [19],
we adaptively partition the local graph G; to incrementally
construct a sparse global graph G, = (Vg, E,), while
ensuring full coverage of the robot belief (i.e., all local nodes
remain reachable through the global graph). The Leiden
algorithm aims to maximize the modularity of the partition,
which is defined as:

1 kik;
Q=g 2 =g

i3

]6(61'7 cj)v (2)

where A;; is the adjacent matrix of the local graph, k; =
Zj A;; is the degree of node i, m = %Z” A;; is the
total number of edges in the graph, S is a linear resolution
parameter, c; denotes the community that node ¢ belongs to,
d(ci, cj) is an indicator function, which equals 1 if nodes
i and j belong to the same community and O otherwise.
Modularity evaluates whether the partition result is more
structured than the random partition. High modularity in-
dicates a community structure with dense intra-community
and sparse inter-community connections.

Starting with an initial partition {C4, Cs, ..., Cy }, for each
node 7, we move it from the current community to its neigh-
boring community (i.e., the community that its neighboring
node belong to and not identical to the current community),
if modularity gain AQ > 0. This node movement process
continues until the modularity stops increasing. We then
refine the community partition to ensure that nodes in
each community are internally connected. We perform the
connectivity check based on £ to split communities that are

zzzzm

Encoder Decoder

Observation

O Node Input

Policy

O Node Feature O Current Node Feature — Edge

Fig. 4. The attention-based decision networks in HEADER. It takes
the local graph, utility, and guideposts as input and outputs a probability
distribution over neighboring nodes of the current robot position as the
policy.

not fully internally connected. Subsequently, we merge the
subcommunities with their neighbors if the modularity can be
improved by doing so. To ensure consistency of the partition
results, we fix the community assignments of existing nodes
and only perform community assignments for newly added
nodes at the current decision step. We also set a threshold
based on W and A,,4e to limit the maximum number of
nodes allowed in each community. To formulate G, for each
community, we generate a global node g; € Vj at the nearest
local node to the center of the community and find its path
and cost to neighboring global nodes by running A* [21] on
the local graph. We term the global node corresponding to
the robot node’s community as the current global node gy,
and relocate its position to the same position as the robot
node vy

3) Incorporating Frontiers: Now we incorporate frontier
information into the hierarchical graph. For each local node
v;, we compute its utility u;, which represents the number
of observable frontiers from the position v; located within
a utility range dyuiiity (Smaller than the sensor range). We
classify the local nodes into utility nodes and non-utility
nodes, depending on whether their utility value satisfies
u; > 0. A global node is classified as an unexplored global
node or an explored global node, depending on whether it
contains at least one utility node.

4) Reference Paths: Moreover, we compute two types of
reference paths: a global reference path P, and local refer-
ence paths P, for the following decision-making. The global
reference path is the shortest path to visit all unexplored
global nodes starting from g.,.. We obtain this path by
solving a TSP problem using OR-Tools [22]. Each local
reference path corresponds to the shortest path from ey,
to a utility node. We obtain these paths using Dijkstra’s
algorithm [23]. In all cases, the initial portion of the current
optimal exploration path lies within the set of these reference
paths.

B. Attention-based Decision

See the details of our attention-based model in [17], [18]

C. Training with Privileged Expert Reward

1) Privileged Expert-guided Reward: We first introduce
our privileged expert planning algorithm, which is probabilis-
tically complete to produce (near-)optimal coverage paths as
demonstrations for training the policy network. We grant the
planner access to the ground-truth environment, making it
a privileged expert. By doing so, the partially observable
exploration problem is transformed into a fully observable
sensor coverage problem, which is easier to tackle as it
eliminates the need to handle the uncertainty that lies in
the unknown environment. We modify the frontiers coverage
algorithm proposed in [5] to plan a path that guarantees to
cover all free space. Let M7 . be the ground truth free
space, M}, the ground truth obstacle space. We denote
the boundary between ground truth free space M}ree and
the unexplored obstacle space M7, \ M5 as the privileged
frontiers M7, . We note that finding the shortest path to
cover the entire ground truth free space is equivalent to
covering all privileged frontiers. To this end, we first sample
a set of viewpoints that collectively observe all frontiers,
and then solve a TSP to compute the shortest path that
visits each viewpoint. We iterate this process multiple times
and select the path with the minimum travel distance as the
privileged expert path. To maintain the consistency between
the expert action space and the learned policy space, similar
to the dense graph Gg4, we construct a privileged graph
G* = (V*, E*), where V* DV, E* D E, as the planning
space. Note that there is no hierarchical representation since
we aim to ensure the optimality of the planned path for
training.

At each decision step ¢, we compute the privileged expert
path +; and take the next waypoint in ¢; as the expert
waypoint w;. We formulate the privileged expert reward r;
based on the normalized Euclidean distance d; between the
expert waypoint w; and the waypoint w; selected by the
learned policy my:

Fig. 5. Illustration of the privileged expert path. The white area denotes the
explored free space, while the light gray region indicates unexplored free
space. The red trajectory represents the privileged expert path planned using
ground-truth information. The yellow dot marks expert path’s first point
as the expert waypoint. The light purple dot indicates the robot’s current
position, and the dark purple dots represent the candidate waypoints. The
privileged reward is based on the distance between the selected waypoint
and the expert waypoint.

We define the reward r; as:
edt/ 2dy, 1
e—1

where d,, is the neighboring threshold to rescale d; between
[0,1]. The exponential term further encourages the policy
to remain close to the expert’s action. Compared to prior
DRL-based methods that rely on carefully tuned, biased
rewards [12]-[17], our privileged expert reward is both
simpler and consistent with the true objective.

We train our policy network with soft actor critic, more
details could be found in [17], [18].

y Tt € [_1,0] (4)

T = —

IV. EXPERIMENTS

We compare HEADER against state-of-the-art exploration
planners in large-scale, realistic Gazebo simulations, cover-
ing both indoor and outdoor benchmark scenarios of up to
330m x 250m. Finally, we deploy HEADER on physical
hardware in three real-world environments, again including
both indoor and outdoor scenarios of up to 300m x 230m.
Note that we use an identical trained model in all the
experiments.

A. Comparison Analysis

We integrate HEADER into the robot operating system
(ROS) to test and compare it with the state-of-the-art open-
sourced exploration planners, including: (1)TARE [5], (2)
DSVP [11], 3) GBP [6], (4) FAEL [7], (5) HPHS [9],
(6) ARIADNE [18]. Note that ARIADNE here is integrated
with a graph rarefaction algorithm as in [18] to enhance
performance in large-scale exploration, and all graph set-
tings (e.g., node resolution and neighboring threshold) are
the same as those in HEADER. We test the exploration
performance of HEADER and the baseline planners in four
exploration benchmark environments proposed in [24]: a
340m x 340m campus environment, a 130m x 100m indoor
corridors environment, a 150m x 150m forest environment,
and a 330m x 250m tunnel network environment. In these
benchmarks, the test platform is a four-wheeled differential-
drive robot equipped with a 16-channel 3D LiDAR, and
the max speed is 2m/s. We select these benchmarks since

=
14

J
I [§

(a) Tunnel

(b) Campus

they are the largest and most realistic testing environments,
to the best of our knowledge. In the campus environment,
we block off certain areas, as the current implementation
of HEADER cannot handle multilayer environments, where
free space may exist above or below occupied regions. All
the test runs on an ASUS mini PC with Intel i7-12700H
CPUs (which is also used in our hardware validation). Note
that GPU is not necessary for HEADER after training.

For different environments, we only tune two parameters
for HEADER: the node resolution A,,,4., Which ranges from
1.2m to 2.8m, and the planning frequency, which ranges
from 1Hz to 2.5Hz. The baseline planners typically have
more parameters to tune to get the best performance for
each environment. We made our best effort to tune them to
improve their performance, except TARE and DSVP, which
are tuned by their authors. To enable the usage of HEADER
in environments with non-flat ground, we develop a terrain
segmentation tool based on a point cloud analysis module
proposed in [24] and Octomap [25], which classifies voxels
as traversable or occupied. The classified voxels are then
projected to formulate an evaluation map as the input of
HEADER.

We run HEADER, ARiADNE, TARE, DSVP 10 times and
HPHS, FAEL, GBP 5 times in each environment. We also
analyze and visualize some key results in Fig. [/ Among
all the baselines, TARE demonstrates the best scalability,
making it one of the only two methods capable of completing
the exploration task in all four environments.

We note that HEADER consistently outperforms both
TARE and ARIADNE across all tested environments. Upon
closer examination, we attribute HEADER’s superior perfor-
mance to three key aspects:

1) The learned local decisions better avoid backtrack
behaviors: HEADER is able to reason about critical un-
known areas, enabling it to make decisions that effectively
avoid redundant backtracking behavior. Conventional
methods, by contrast, often suffer from inefficient detour
exploration paths due to lack of ability to infer information
beyond known areas. Moreover, HEADER’s advantage over
ARIADNE remains evident in high-fidelity simulations and

(c) Forest (d) Indoor

Fig. 6. Demonstration of the exploration trajectories output by HEADER in both indoor and outdoor Gazebo simulations. The Trajectory is color-mapped

to represent the robot’s movement over time.

X10 x10
A s
E 201 Y
g g3
E 157 5
E 1.0 TARE ; 2
g HEADER 3 TARE
5 05 4 DSVP 514 HEADER
= ARiADNE B DSVP
@ 0.0 m 0
T T T T T
0 2000 0 500 1000
Time (s) Time (s)
—_~ ~ 2.0 4
) Z
4 -
g g 154
= =
22 2107
H 2 054
g g
S 0 - =}
& O 0.0
T T T T T T T
0 1000 2000 3000 0 500 1000
Time (s) Time (s)
tsen's @ ; 7777hJ
B HI— i
= = | cmmmed
5 5 | iD=
=l JRVAVA =
HIH em
T T T T T T T
2200 2400 2600 2800 1000 1100 1200
Makespan (s) Makespan (s)
(a) Tunnel (b) Campus

x10* x10

o o
E E
[} [}
£ £
E , TARE E TARE
5 HEADER 5 2 HEADER
214 DSVP 5 DSVP
E ARIADNE E ARIADNE
ESEO SO
T T T T T
0 500 1000 0 500
Time (s) Time (s)
2 oER
o 21 Q
£ £
&= E 24
en en
e g
5] 5 17
o o
g g
O 4 O 04
T T T T T
0 500 1000 0 500
Time (s) Time (s)
5 AT o e oo ot
=l =l
=] =]
£ | Lo Lo < | &S L
5 | et T 5 | et
= =
0 0 0 0 o5
T T T T T T
600 700 800 550 600 650
Makespan (s) Makespan (s)
(c) Forest (d) Indoor

Fig. 7. Performance comparison between HEADER and baseline methods across 10 runs per method in each environment. The first row shows the explored
volume as a function of time, reflecting exploration efficiency. The second row presents the per-decision computation time, indicating computational cost
during exploration. The third row illustrates the distribution of makespan values of all runs. Overall, HEADER achieves consistently higher exploration
efficiency and lower computation time, and its makespan is statistically lower than that of all baselines.

becomes even more significant in complex scenarios.

2) The community-based graph is a more efficient global
representation: At the global level, our community-based
approach enables the construction of a sparser graph rep-
resentation, offering improved scalability without com-
promising the coverage of explored areas. The global
partitioning depends on the structure of the constructed local
graph, allowing the shape of each global partition to be
adaptively and flexibly adjusted. Meanwhile, the computation
is typically light since the complexity of our community
partition is O(n + m), where n denotes the number of local
nodes and m denotes the number of local edges.

3) Joint decisions allow more adaptive exploration behav-
iors: Existing methods typically require the robot to strictly
follow the planned global path, which is coarse and may be
misleading in certain scenarios. In contrast, HEADER treats
the global path as a reference rather than a constraint,
allowing the local planner to make joint decisions. This
enables HEADER to adaptively determine whether to follow
the global guidance or deviate from it when necessary. As a
result, HEADER demonstrates robustness in scenarios where
the global path is suboptimal or potentially misleading for
local exploration.

B. Hardware Validation

We validate HEADER on two wheeled robots: an Agilex
Scout-mini equipped with an Ouster OS0-32 LiDAR, and
a Yuhesen FW-mini equipped with two mid360 LiDARs.
We use FastLIO2 [3] to get the odometry and mapping.
We set the max speed to 1m/s, sensor range to 8m, and
replanning frequency to 1Hz for all of our tests. We run
HEADER in three real-world scenarios: a 200m x 130m
indoor teaching building environment, a 75m x 60m outdoor
garden environment, and a 300m x 230m outdoor campus
environment. We set the map resolution A,,,, = 0.4m,
the node resolution A,,qe = 0.8m for teaching building
and garden environments, and A,y = 1m, Apoge = 2m
for the campus environment. We note that these parame-
ters were all guessed beforehand without tuning during the
experiment. Since our implementation has not considered
negative obstacles, we manually block stairs in the building
and garden environments. In these real-world tests, HEADER
reproduces similar performance as in the simulation: success-
fully exploring the full environment, keeping low computing
time, and achieving high exploration efficiency. We believe
this hardware validation further demonstrates HEADER’s
generalizability to unseen environments, as well as its robust
sim-to-real transferability.

(a) Campus Explored Map

(c) Hardware setup

(f) Building Map

Fig. 8.

(d) Garden Map

(b) Campus Exploration Trajectory

(g) Building Trajectory

Validations of HEADER in real-world scenarios with a wheeled robot. The trajectory is color-mapped to represent the robot’s movement over

time. The campus environment is around 300 m x 230 m, garden 75m X 60 m, and building 200 m X 130 m.

V. CONCLUSION

In this work, we propose HEADER, a hierarchical
learning-based planner for autonomous robot exploration.
We first introduce an efficient global representation using
community detection. We then develop an attention-based
neural network that leverages both global reference paths and
local observations to make joint decisions for local move-
ments. Furthermore, we design a privileged expert reward
to train the network, enabling the model to better reason
about critical unknown areas by imitating a privileged expert
while still exploring the policy space. As a result, HEADER
achieves state-of-the-art performance in terms of scalability
and exploration efficiency, as demonstrated in both high-
fidelity simulations and real-world hardware experiments.

Future works will focus on extending HEADER from
single to multi-robot exploration, where robots needs to
achieve efficient cooperation in both local and global level.
We are interested in extend HEADER to handle sensors with
a limited filed-of-view (e.g., cameras), where the heading of
the robot should be considered.

(1]

REFERENCES

J. Zhang, S. Singh et al., “Loam: Lidar odometry and mapping in
real-time.” in Robotics: Science and systems, vol. 2, no. 9. Berkeley,
CA, 2014, pp. 1-9.

T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti, and D. Rus,
“Lio-sam: Tightly-coupled lidar inertial odometry via smoothing and
mapping,” in 2020 IEEE/RSJ international conference on intelligent
robots and systems (IROS). 1EEE, 2020, pp. 5135-5142.

W. Xu, Y. Cai, D. He, J. Lin, and F. Zhang, “Fast-lio2: Fast direct lidar-
inertial odometry,” IEEE Transactions on Robotics, vol. 38, no. 4, pp.
2053-2073, 2022.

M. Selin, M. Tiger, D. Duberg, F. Heintz, and P. Jensfelt, “Efficient
autonomous exploration planning of large-scale 3-d environments,”
IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 1699-1706,
2019.

C. Cao, H. Zhu, H. Choset, and J. Zhang, “Tare: A hierarchical
framework for efficiently exploring complex 3d environments,” in
Robotics: Science and Systems, 2021.

T. Dang, M. Tranzatto, S. Khattak, F. Mascarich, K. Alexis, and
M. Hutter, “Graph-based subterranean exploration path planning using
aerial and legged robots,” Journal of Field Robotics, vol. 37, no. 8,
pp. 1363-1388, 2020.

J. Huang, B. Zhou, Z. Fan, Y. Zhu, Y. Jie, L. Li, and H. Cheng,
“Fael: Fast autonomous exploration for large-scale environments with
a mobile robot,” IEEE Robotics and Automation Letters, vol. 8, no. 3,
pp. 1667-1674, 2023.

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

O. Peltzer, A. Bouman, S.-K. Kim, R. Senanayake, J. Ott, H. Delecki,
M. Sobue, M. Kochenderfer, M. Schwager, J. Burdick et al., “Fig-op:
Exploring large-scale unknown environments on a fixed time budget,”
arXiv preprint arXiv:2203.06316, 2022.

S. Long, Y. Li, C. Wu, B. Xu, and W. Fan, “Hphs: Hierarchical
planning based on hybrid frontier sampling for unknown environments
exploration,” in 2024 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS). 1EEE, 2024, pp. 12056-12 063.
C. Cao, H. Zhu, Z. Ren, H. Choset, and J. Zhang, ‘“Representation
granularity enables time-efficient autonomous exploration in large,
complex worlds,” Science Robotics, vol. 8, no. 80, p. eadf0970, 2023.
H. Zhu, C. Cao, Y. Xia, S. Scherer, J. Zhang, and W. Wang,
“Dsvp: Dual-stage viewpoint planner for rapid exploration by dynamic
expansion,” in 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 1EEE, 2021, pp. 7623-7630.

F. Chen, S. Bai, T. Shan, and B. Englot, “Self-learning exploration
and mapping for mobile robots via deep reinforcement learning,” in
Aiaa scitech 2019 forum, 2019, p. 0396.

F. Chen, J. D. Martin, Y. Huang, J. Wang, and B. Englot, “Autonomous
exploration under uncertainty via deep reinforcement learning on
graphs,” in 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 1EEE, 2020, pp. 6140-6147.

Y. Xu, J. Yu, J. Tang, J. Qiu, J. Wang, Y. Shen, Y. Wang, and H. Yang,
“Explore-bench: Data sets, metrics and evaluations for frontier-based
and deep-reinforcement-learning-based autonomous exploration,” in
2022 International Conference on Robotics and Automation (ICRA).
IEEE, 2022, pp. 6225-6231.

S. Zhu, J. Zhou, A. Chen, M. Bai, J. Chen, and J. Xu, “Maexp: A
generic platform for rl-based multi-agent exploration,” in 2024 IEEE
International Conference on Robotics and Automation (ICRA). 1EEE,
2024, pp. 5155-5161.

F. Niroui, K. Zhang, Z. Kashino, and G. Nejat, “Deep reinforcement
learning robot for search and rescue applications: Exploration in
unknown cluttered environments,” IEEE Robotics and Automation
Letters, vol. 4, no. 2, pp. 610-617, 2019.

Y. Cao, T. Hou, Y. Wang, X. Yi, and G. Sartoretti, “Ariadne: A
reinforcement learning approach using attention-based deep networks
for exploration,” in 2023 IEEE International Conference on Robotics
and Automation (ICRA). 1EEE, 2023, pp. 10219-10225.

Y. Cao, R. Zhao, Y. Wang, B. Xiang, and G. Sartoretti, “Deep
reinforcement learning-based large-scale robot exploration,” [EEE
Robotics and Automation Letters, 2024.

V. A. Traag, L. Waltman, and N. J. Van Eck, “From louvain to leiden:
guaranteeing well-connected communities,” Scientific reports, vol. 9,
no. 1, pp. 1-12, 2019.

S. Fortunato, “Community detection in graphs,” Physics reports, vol.
486, no. 3-5, pp. 75-174, 2010.

P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE transactions on
Systems Science and Cybernetics, vol. 4, no. 2, pp. 100-107, 1968.
L. Perron and V. Furnon, “Or-tools,” Google. [Online]. Available:
https://developers.google.com/optimization/

E. DIJKSTRA, “A note on two problems in connexion with graphs.”
Numerische Mathematik, vol. 1, pp. 269-271, 1959.

C. Cao, H. Zhu, F. Yang, Y. Xia, H. Choset, J. Oh, and J. Zhang,
“Autonomous exploration development environment and the planning
algorithms,” in 2022 International Conference on Robotics and Au-
tomation (ICRA). 1EEE, 2022, pp. 8921-8928.

A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “OctoMap: An efficient probabilistic 3D mapping framework
based on octrees,” Autonomous Robots, 2013.

https://developers.google.com/optimization/

	Introduction
	Problem Formulation
	Methodology
	Community-based Hierarchical Graph
	Local Graph
	Global Graph
	Incorporating Frontiers
	Reference Paths

	Attention-based Decision
	Training with Privileged Expert Reward
	Privileged Expert-guided Reward

	Experiments
	Comparison Analysis
	The learned local decisions better avoid backtrack behaviors
	The community-based graph is a more efficient global representation
	Joint decisions allow more adaptive exploration behaviors

	Hardware Validation

	Conclusion
	References

