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Abstract— Periodic 3D reconstruction is essential for crop
monitoring, but costly when each cycle restarts from scratch,
wasting resources and ignoring information from previous
captures. We propose temporal-prior-guided view planning for
periodic plant reconstruction, in which a previously recon-
structed model of the same plant is non-rigidly aligned to
a new partial observation to form an approximation of the
current geometry. To accommodate plant growth, we inflate this
approximation and solve a set covering optimization problem
to compute a minimal set of views. We integrated this method
into a complete pipeline that acquires one additional next-best
view before registration for robustness and then plans a globally
shortest path to connect the planned set of views and outputs
the best view sequence. Experiments on maize and tomato
under hemisphere and sphere view spaces show that our system
maintains or improves surface coverage while requiring fewer
views and comparable movement cost compared to state-of-the-
art baselines.

I. INTRODUCTION

Monitoring the growth of crops is essential but labor-
intensive. Autonomous monitoring with robots offers a scal-
able alternative, and recent work has explored active percep-
tion for 3D plant reconstruction by solving the next-best-
view (NBV) planning problem [3, 6, 18, 27] to mitigate
occlusions caused by complex plant structures. In production
environments such as glasshouses, reconstruction needs to be
carried out periodically (e.g., twice per week) to capture the
continuous growth of plants. Most existing systems, however,
restart the reconstruction process from scratch at each cycle,
leading to unnecessary resource consumption and the loss of
valuable information from previous captures.

Given a previously reconstructed 3D model of the same
plant, how can we exploit this temporal prior to improve
view planning for the current cycle? Our approach leverages
two ideas. First, we perform non-rigid registration to align
the prior model to a new partial observation, yielding an
approximation of the current geometry on which we can plan
directly, as shown in Fig. 1. Second, once a geometry ap-
proximation is available, we adopt a one-shot view planning
strategy that computes a set of informative views at once
by solving a set covering optimization problem balancing
coverage and acquisition effort, following the spirit of [21].

Concretely, we follow the combined view planning
pipeline in [22], which couples an initial NBV stage with
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Fig. 1: An example of the temporal prior construction for the
target maize plant. The full 3D reconstruction from the previous
cycle (red) and the partial observation acquired in the current
cycle (blue) are registered to generate an approximated geometry,
which serves as a temporal prior for subsequent view planning.

one-shot planning. In practice, a single extra NBV typically
increases the observed surface to about 60-80% (see [22]),
which is adequate for robust non-rigid registration. After
registration, we account for potential plant growth between
acquisition cycles by introducing an inflation step to the ap-
proximated geometry. The inflated geometry approximation
then serves as the input to the set covering optimization to
compute the minimal view set for the current cycle.

To the best of our knowledge, this is the first work to
leverage temporal priors of growing plants to enhance view
planning for periodic 3D reconstruction. Our contributions
are summarized as follows:

o Formalization of temporal-prior-guided view planning.
Given a prior plant model and a new partial observation,
plan a minimal view set that fully covers an inflated
geometry approximation of the current plant.

e A complete pipeline that accounts for non-rigid reg-
istration robustness and potential plant growth across
acquisition cycles.

« Experimental results demonstrate that our method main-
tains high reconstruction quality while reducing both
the number of views and the robot’s movement cost
compared with [20]. Moreover, it exhibits stronger gen-
eralization across varying plant complexities and view
space configurations than [22].

To facilitate reproducibility, we release our implementation
at https://github.com/HumanoidsBonn/TPVP.

II. RELATED WORK
A. View Planning in 3D Reconstruction

3D reconstruction is central to many robotic applications.
Without prior knowledge, a common approach is NBV plan-
ning: iteratively select the next camera pose from the current
reconstruction to greedily maximize information gain, using
either search-based [3, 18, 19, 27] or learning-based [5, 6,
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Fig. 2: Overview of the proposed view planning pipeline, following the combined framework in [22]. The system starts from a random
initial view to acquire an initial point cloud, which is then fused with a subsequent observation planned by the NBV module. Using
temporal priors, it predicts the minimum set of views required to cover the plant to be reconstructed. Planned views are visualized with
their local coordinate axes in red, green, and blue—while the initial view and NBV are indicated in black. Finally, the global path (purple)
is computed to minimize the robot’s movement cost during data collection.
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Fig. 3: Detailed pipeline of view planning with temporal priors. The framework first aligns the previously reconstructed 3D point cloud
of the same plant (red)—serving as the temporal prior—with the current observation from the initial view and NBV (blue) via non-rigid
registration. It then applies inflation (green) to account for potential plant growth. Finally, a set covering optimization problem is solved

to determine the minimum view set required to fully cover the inflated geometry approximation.

17, 28] techniques. While effective, NBV requires expensive
online map updates and often yields inefficient trajectories.

To mitigate this, one-shot view planning [11, 21, 23, 24]
predicts the entire set of required views from an initial mea-
surement and then computes a globally short path through
them, substantially reducing movement cost. A recent sys-
tem [22] combines NBV with one-shot planning—using a
single NBV to activate a trained network from the set-
covering-based view planning dataset—thereby preserving
reconstruction quality while reducing movement cost.

However, these pipelines typically depend on learned
shape priors trained on generic object datasets, which are
not specific to agricultural settings. Our approach replaces
such learned priors with temporal priors: we reuse the
previous-cycle reconstruction of the same plant to guide view
selection within the same combined pipeline. This preserves
the efficiency benefits of the framework while making the
prior plant-specific and periodic.

B. Non-Rigid Registration

Non-rigid registration has been extensively surveyed [7].
Its goal is to align a source shape (mesh or point cloud)
to a target observation. Unlike computer-graphics settings
that often assume complete and well-defined shapes, robotic
sensing needs to cope with noise and partial observations.

Many methods extend the rigid ICP paradigm and solve
for a deformation using iterative nearest-neighbor matching
with regularization (e.g., optimal-step nonrigid ICP [2]).
However, NN-based correspondences can become unstable
under low overlap or large deformations. An alternative is
to cast deformation on a graph and optimize node-wise rigid
motions, as in embedded deformation [26]. This idea has
recently been applied to spatio-temporal plant mapping in

the wild [15]. We follow the deformation graph formulation
but tailor it to our single-plant point clouds.

Prior work primarily targets offline alignment of recorded
data; in contrast, we use the registered (and inflated) geom-
etry approximation online to inform view planning within a
combined pipeline for efficient periodic plant reconstruction.

III. OUR APPROACH

Our system pipeline is illustrated in Fig. 2. Following [22],
we employ PC-NBV [28] for next-best-view selection, and
solve a shortest Hamiltonian path problem [9] for global path
planning for connecting selected views.

The detailed pipeline of our view planning module with
temporal priors is shown in Fig. 3. This stage involves two
key optimization problems: (i) Non-rigid registration to align
the previous cycle’s reconstruction with the current partial
observation, accounting for plant deformation; and (ii) Set-
covering optimization to determine the minimal set of views
needed to cover the inflated geometry approximation.

A. Non-Rigid Registration with Temporal Priors

We assume the target plant remains at the same physical
location across cycles, so the previous reconstruction and the
current observation share a common global frame and can
be fused directly.

Let the previous-cycle source point cloud be P = {p;} ¥,
(complete model) and the current partial observation be Q.
We seek a non-rigid warp that aligns P to Q and yields
the geometry approximation P = {p;} for subsequent view
planning.

We build an embedded deformation (ED) graph [26] on P
by voxel down-sampling (voxel size 0.004 m). Graph nodes



are voxel centers {n;} with edges linking k-nearest neigh-
bors. Each point p; is softly attached to its K, nearest graph
nodes (anchors; K,=8) with weights w;; computed from
the point-node distances via a Gaussian decaying kernel and
normalized per point to sum to one. The warped position is
the standard ED blend of per-node rigid transforms:

]5,’ = Z Wy j (Rj(pi—nj)—l—nj +tj), (1)
n; €A()

where R; € SO(3) and t; € IR3 are, respectively, the rotation
and translation parameters of node n;, and .A(¢) denotes the
anchor set of p;.

We minimize a weighted sum of three standard terms:

L= )\arap Earap + )\cd £cd + )\lap L:lap (2)

Here L,;ap is the ED as-rigid-as-possible regularizer on the
graph [26]. L.q is the symmetric Chamfer distance between
P and Q robust for partial scans without explicit correspon-
dences. Li,p is a sampled first-order Laplacian smoothness
on P, encouraging local geometric continuity in the complete
prior. We set (Aarap; Acd; Alap) = (1.0, 0.1, 0.01) to empha-
size the as-rigid-as-possible term while keeping the Chamfer
and Laplacian terms as mild regularizers to balance fidelity
and smoothness.

Rotations are updated on SO(3) via the exponential map.
We use Adam [13] with a learning rate of 0.1 for 300
iterations. The aligned point cloud P is then used by the
subsequent set covering optimization stage.

B. Set Covering Optimization with Inflated Approximation

To capture likely growth regions, we augment the aligned
prior P with an inflation set Z consisting of points that are
near the current scan and far from the prior. A candidate
point is accepted if its 1-NN distance to Q 1is less than
Yoear = 0.003m and its 1-NN distance to P exceeds
~Year = 0.005 m. Distances are computed via KD-tree nearest-
neighbor queries, and candidates are generated on a voxel
grid with resolution 0.004 m.

Because the subsequent set covering step uses ray casting
for visibility checks, we also include Q in the approximation
to prevent rays from penetrating already observed surfaces.
We therefore construct the inflated geometry approximation
used for set covering as the union Pt =PUQUL.

To make the optimization efficient, we build a sparse
surface representation of the inflated approximation PT.
Concretely, we ray-cast and voxelize the approximation with
OctoMap [10] at a voxel resolution of 0.004 m to obtain a
set of surface points Psyrr = {p;}.

Let V C R? x SO(3) be a discrete set of candidate views
(e.g., hemisphere or sphere configurations with a radius of
0.4 m, as detailed in Sec. IV). For each v € V, visibility is
computed by OctoMap ray casting to produce the visible set
Py € Pourg. We define the indicator:

I(p,v) = {1’ pe P, 3)

0, otherwise.
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Fig. 4: Examples of the two environmental configurations used in
our experiments. (a) Hemisphere view space with a supporting table,
shown with a Maize plant. (b) Sphere view space without a table,
shown with a Tomato plant.

We then solve a set covering optimization problem to
select the minimum number of views that fully cover the
surface points:

piy 2o

veV

s.t. Zl(p, v)xy, > 1, VP E Py, 4
veV
Ty E{O,l}, Yvel.

Here x,, is a binary decision variable indicating whether view
v is selected, and ) .\, I(p,v) x, > 1 enforces that every
surface point p € Psyuy must be covered by at least one
chosen view that observes this point.

This formulation is an integer linear program and is solved
with Gurobi [8]. Note that the initial view and the NBV
are already visited; therefore, they are excluded from the
optimization along with their corresponding surface points,
and the solver is applied to select additional views that cover
the remaining surface. The resulting view set is then passed
to the global path planner.

All of the implementation parameters above are chosen
with respect to the overall plant size, which is normalized to
0.12 m (to fit the simulation platform in [22]). In practice,
the voxel size should be selected to balance the number of
optimization variables with the desired computational speed.
Further implementation details and exact parameter values
can be found in our released code.

IV. EXPERIMENTAL RESULTS

Dataset and Test Platform. To evaluate periodic 3D plant
reconstruction, we adopt real growing-plant data from [4] for
non-rigid, cross-cycle registration on maize and tomato. The
dataset contains two plant types (maize and tomato), each
with three plant instances. For each instance, we use the last
two consecutive time steps, as later growth stages are more
complex and thus provide a more challenging test setup for
view planning performance. Since view planning algorithms
are usually sensitive to the initial observation, following [22],
we evaluate two global rotations (0°and 45°) and three initial
viewpoints (near-horizontal, oblique, and near-top). In total,
this yields 2x3x2x3 = 36 test cases.



. Number Surface Movement
View Space Method of Views Coverage (%) Cost (m)

5 91.12 £ 3.12 | 2.05 £+ 0.38

10 97.71 £ 0.83 | 4.54 £+ 0.67

Hemisphere GMC 201 15 98.67 £ 0.50 | 6.02 £+ 0.97

20 99.11 £ 0.53 7.17 £ 1.04

MA-SCVP [22] | 12.61 £ 1.20 | 98.80 £ 0.43 3.05 £ 0.30

Ours 11.06 + 3.38 | 98.77 £ 091 3.10 £ 0.51

5 81.86 + 11.13 | 1.77 £+ 0.51

10 90.58 £ 10.25 | 4.21 + 0.82

Sphere GMC 201 15 95.18 £ 584 | 6.75 £ 1.04

20 97.14 £ 3.63 9.21 £ 1.26

MA-SCVP [22] | 12.72 £ 1.09 | 9292 £ 429 | 2.99 £ 0.22

Ours 9.22 + 1.66 98.44 + 0.68 | 3.35 + 041

TABLE I: View planning performance under different view space
configurations for various methods. Note that GMC selects the NBV
iteratively, so results are reported for 5, 10, 15, and 20 views to show
overall performance, whereas MA-SCVP and our method predict
the required number of views for each test case directly.

View Space Configuration. The view planning simulator
in [22] assumes a tabletop setting with a hemispherical
view space of 32 views. In real production settings, the
feasible view space can change dynamically due to robot
reachability and occlusions. We therefore additionally eval-
vate a more flexible spherical view space of 63 views.
These views are evenly distributed around the target object
by solving the Tammes problem [14]. Conceptually, this is
aligned with multi-elevation, multi-view capture setups seen
in recent plant-phenotyping systems [1], without attempting
to replicate any specific hardware. Fig. 4 illustrates both
configurations.

Baseline and Evaluation. We compare against the best-
performing NBV method, GMC [20], and the combined
method MA-SCVP [22], both reported in [22]. GMC is
an NBV-based approach that iteratively selects the most
informative next view for data collection, while MA-SCVP
uses learned priors in its network for set-covering view
planning. Following [22], we report three metrics: (i) the
number of views required to complete the reconstruction,
(ii) the visible surface coverage, defined as the ratio of
reconstructed points to all visible points from the entire
view space, and (iii) the movement cost, measured as the
accumulated Euclidean path length connecting all selected
views.

A. Evaluation of View Planning Performance

In this section, we analyze the view planning performance
across different methods under varying view space configu-
rations. As shown in Table I, our method maintains high
reconstruction quality while reducing the required resources
in terms of both the number of views and the associated
movement cost.

Comparison to NBV-Based GMC. While GMC achieves
higher surface coverage as the number of viewpoints in-
creases, this improvement comes at the cost of substantially
increased robot movement and more viewpoints. In contrast,
our method offers a more favorable trade-off between surface
coverage performance and reconstruction efficiency.

Comparison to Combined Pipeline MA-SCVP. Our
method achieves near-complete surface coverage with fewer
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Fig. 5: Visual comparison of our method with GMC [20] and MA-
SCVP [22]. The top row shows the same initial view (black), the
selected views (red-green-blue), and the corresponding view paths
(purple). For a fair comparison, all methods are visualized with 12
views (our method and MA-SCVP both predict 12 views, while 12
views are selected from GMC for consistency). The bottom row
visualizes the reconstructed plant surfaces (blue) and uncovered
regions (red) using voxelization, focusing on the bottom part of
the plant. Our method achieves the highest surface coverage with
a shorter path; GMC also attains good coverage but with a longer
path; MA-SCVP, despite a similar path length, fails to observe the
bottom surface details.

views than MA-SCVP, reflecting a more complexity-aware,
object-specific allocation of the viewpoint budget. In terms
of view space generalization, unlike MA-SCVP—whose net-
work is trained on and limited to a fixed 32-pose hemisphere
and thus cannot include bottom views—our method adapts
to flexible view space configurations. In the sphere setting,
our method considers bottom views and also achieves near-
complete surface coverage. To illustrate this, we present
in Fig. 5 a visualization of a representative reconstruction
example. Overall, this adaptability allows our approach to
maintain high performance across diverse plant types and
varying view space constraints, both of which can change
dynamically in real production environments.

Time Analysis. The mission time of a reconstruction run
is dominated by three factors: (i) the number of views to
acquire and fuse, (ii) the robot movement between views,
and (iii) the planner’s inference time. On our setup, planner
inference takes 10—15 seconds for our method, less than 1
second for MA-SCVP, and about 1.5 seconds per iteration for
GMC (about 30 seconds for 20 views). Because our method
typically requires fewer views and induces less movement
cost than GMC, the overall mission time is lower despite
comparable inference time. Compared to MA-SCVP, our
inference time is higher (with similar movement cost and
a slightly smaller number of views), so the overall mission
time can be longer. We argue this overhead is justified by
improved coverage and flexibility: unlike MA-SCVP, our
method adapts the view space and achieves near-complete
coverage in the sphere configuration.

B. Ablation Study on Inflation

In this section, we present an ablation study on the impact
of the inflation module, where only the aligned prior is
retained for the set covering. As shown in Table II, in-



Plant Type | Method of Views | Coverage () | Con (.
Ve | Ours wio Inflation | 675 £ 0.97 | 9699 £ 1.16 | 251 £ 032
Ours w/ Inflation | 7.92 & 1.02 | 98.06 £ 0.75 | 2.85 £ 0.29
Tomato|_0urs wio Inflation | 11.42 & 2.05 | 98.95 £ 050 | 3.38 & 030
Ours w/ Inflation | 12.37 £ 2.17 | 99.15 £ 0.40 | 3.61 £ 0.28

TABLE II: Ablation study evaluating the impact of geometry
approximation inflation on view planning performance.

Plant Type | View Space gu\ll?g\irs CovS;;fgge(% )
Maize Hemisphere 794 + 1.11 98.09 £ 0.82
Sphere 7.89 + 0.96 98.02 + 0.69

Tomato Hemisphere | 14.17 4+ 1.34 | 99.45 4+ 0.20
Sphere 10.56 + 0.98 | 98.85 + 0.32

TABLE III: Performance of our method across different plant types
and view space configurations.

corporating inflation consistently improves surface coverage
compared to the no-inflation variant across both plant types.
The improvement is particularly notable for maize, which we
attribute to inflation’s ability to compensate for slight regis-
tration errors and account for inter-cycle growth between the
current observations and the predicted deformation, thereby
leading to better coverage performance in such cases.

C. Analysis on Plant Complexity

In this section, we evaluate our method across different
view space configurations and plant types, which correspond
to different levels of structural complexity. As shown in
Table III, our method assigns fewer views to the simpler
plant (maize) and more to the more complex plant (tomato),
consistent with their occlusion patterns—tomato’s broad
leaves incur heavier self-occlusion. Moreover, for the tomato,
we require fewer views in the sphere configuration than in
the hemisphere configuration, because bottom occlusions are
easier to resolve when viewpoints are allowed below the
plant. Taken together, these results indicate that our method
adaptively allocates the viewpoint budget according to plant
complexity and the available view space.

D. Analysis on NBV Module

In this section, we analyze the effect of the NBV module
by computing the Chamfer distance between the aligned
priors and the ground truth. As shown in Table IV, introduc-
ing a single NBV consistently reduces the Chamfer distance
compared with using only the initial view. This indicates that
without the NBV, the non-rigid registration is less reliable
and more prone to errors. Moreover, when relying solely on
the initial view (without inflation), the final reconstruction
surface coverage decreases to 97.61 + 1.75, averaged over
both the hemisphere and sphere. These results demonstrate
that adding one NBV provides complementary information
that enhances the robustness of non-rigid registration and
ultimately improves the reconstruction quality.

V. DISCUSSION

In this work, we use real growing-plant data [4] with
non-rigid, cross-cycle registration as an approximation for

Method
Initial View Only
Initial View + One NBV

Chamfer Distance (mm)
2.764 £+ 1.195
1.743 + 0.444

TABLE IV: Registration performance when using only the initial
view or adding one NBV.

deployment in production environments such as glasshouses.
Moving toward a deployable robotic system in the field,
we identify one possible challenge: spatio-temporal map-
ping in real glasshouse deployments. Our current method
assumes that non-rigid growth of a single plant between
cycles remains within a range that allows reliable regis-
tration using partial observations. Larger and more irregu-
lar deformations of multiple plants in the glasshouse may
violate this assumption, leading to registration drift and
reduced view planning performance. Recent work on spatio-
temporal consistent plant mapping has demonstrated robust
localization and deformation handling in large unstructured
environments [15], which represents a promising direction
for future extension.

To move closer to deployment, we plan to integrate our
approach with global view motion planning to account for the
robot arm’s motion cost in joint space (approximated in this
work using Euclidean distance, following [22]). Our temporal
prior can directly replace static priors in global view motion
planning frameworks for fruit and plant mapping, retaining
set-covering-based coverage while benefiting from globally
optimized paths [12].

Finally, considering semantic consistency across cycles
may provide another direction to improve robustness. Se-
mantic cues can serve as stable anchors for cross-cycle cor-
respondence and guide view planning toward plant structures
that are often occluded yet crucial for monitoring, such as
fruits or peduncles. Leveraging annotated maize and tomato
datasets for semantic evaluation [25], and building on spatio-
temporal semantic mapping to maintain instance-level con-
tinuity over time [16], could further enhance performance.

VI. CONCLUSION

We presented a temporal-prior-guided view planning ap-
proach integrated into a combined pipeline that couples an
initial NBV stage with one-shot planning. Starting from
a previous-cycle reconstruction, we acquire one additional
NBV to obtain an informative observation and improve regis-
tration robustness, non-rigidly register the prior to the current
partial reconstruction, inflate the geometry approximation to
account for inter-cycle growth, and solve a set-covering prob-
lem to compute a minimal view set; the selected views are
then sequenced by a global path planner. Experiments show
that our method maintains or improves surface coverage
while using fewer views and comparable robot movement,
and it generalizes better to plant complexity and flexible view
space configurations than strong baselines. These results
highlight the value of temporal priors for periodic 3D plant
reconstruction.
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