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Abstract— This research tackles the challenge of real-time
active view selection and uncertainty quantification on visual
quality for active 3D reconstruction. Visual quality is a critical
aspect of 3D reconstruction. Recent advancements such as
Neural Radiance Fields (NeRF) and 3D Gaussian Splatting
(3DGS) have notably enhanced the image rendering quality of
reconstruction models. Nonetheless, the efficient and effective
acquisition of input images for reconstruction—specifically,
the selection of the most informative viewpoint—remains an
open challenge, which is crucial for active reconstruction.
Existing studies have primarily focused on evaluating geometric
completeness and exploring unobserved or unknown regions,
without direct evaluation of the visual uncertainty within the
reconstruction model. To address this gap, this paper introduces
a probabilistic model that quantifies visual uncertainty for
each Gaussian. Leveraging Shannon Mutual Information, we
formulate a criterion, Gaussian Splatting Shannon Mutual
Information (GauSS-MI), for real-time assessment of visual
mutual information from novel viewpoints, facilitating the
selection of next best view. GauSS-MI is implemented within
an active reconstruction system integrated with a view and
motion planner. Extensive experiments across various simulated
and real-world scenes showcase the superior visual quality and
reconstruction efficiency performance of the proposed system.

I. INTRODUCTION

3D reconstruction is attracting increasing interest across
various fields, including computer vision [1], [2], manipu-
lation, robotics [3], construction, etc. Recent advancements,
such as Neural Radiance Field (NeRF) [1] and 3D Gaussian
Splatting (3DGS) [2], have notably enhanced the visual qual-
ity of 3D reconstruction models. However, these techniques
necessitate the prior acquisition of a significant number of
images, which can be laborious, and the extensive sampling
of viewpoints may result in redundancy. Consequently, a
challenging issue arises in effectively and efficiently selecting
the viewpoints for image capture, which is also a critical
problem for active 3D reconstruction.

To enhance the autonomy of robots and enable them to
perform 3D reconstruction tasks in complex environments,
there has been a growing focus on active 3D reconstruction in
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recent years [3], [4]. In the active 3D reconstruction process,
at each decision step, the agent must utilize a series of past
observations to actively determine the next viewpoint for
capturing new observation, thus gradually accomplishing the
reconstruction task. The efficient selection of viewpoints is
particularly crucial in this process due to limited onboard
resources such as battery power, memory, and computation
capability. Previous studies on active 3D reconstruction have
primarily relied on evaluating volumetric completeness to
explore all unknown voxels in the environment [3]-[5] or as-
sessing surface coverage completeness [6]. These approaches
overlook the visual quality. By utilizing these indirect met-
rics, the resulting visual fidelity of the reconstruction model
cannot be guaranteed. Advanced by radiance field rendering
methods [1], [2], recent works have attempted to quantify
visual uncertainty to directly evaluate the visual quality of
reconstruction models [7], [8].

Despite these efforts, effectively and efficiently assessing
and optimizing visual quality in active 3D reconstruction
remains challenging. To address this, three core issues
must be resolved. Firstly, a robust mathematical model is
necessary to quantify the information obtained from each
measurement, specifically the observed image. This model
can serve as a reconstruction completeness metric for visual
fidelity. Secondly, a metric is needed to measure the expected
information from novel viewpoints without a prior, which
can facilitate the selection of the next viewpoint in the
active reconstruction process. Lastly, a comprehensive active
reconstruction system is required to autonomously identify
a reasonable next viewpoint with the highest expected infor-
mation. The system should then enable the agent to navigate
to the selected viewpoint, capture new data, and iteratively
advance the reconstruction process.

To overcome the aforementioned challenges, this paper
proposes a novel view selection metric based on a visual
uncertainty quantification method, from which we develop
a novel active 3D reconstruction system. We first introduce
a probabilistic model that integrates the measurement model
with image loss to quantify the observed information for
each spherical Gaussian in 3D Gaussian Splatting. Based on
Shannon Mutual Information theory, we leverage the prob-
abilistic model to establish the mutual information between
the reconstruction model and observation viewpoint, which
measures the expected information gained from an arbitrary
viewpoint for the current reconstruction model. This mutual
information function is termed Gaussian Splatting Shannon
Mutual Information (GauSS-MI), enabling real-time visual
quality assessment from novel viewpoints without a prior.
The GauSS-MI is implemented and integrated into a novel
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active 3D Gaussian splatting reconstruction system featuring
a view and motion planner that determines the next best view
and optimal motion primitive. Extensive experiments, includ-
ing benchmark comparisons against state-of-the-art methods,
validate the superior performance of the proposed system in
terms of visual fidelity and reconstruction efficiency. The
implementation of the proposed system is open-sourced on
Github' to support and advance future research within the
community.

The main contributions of our work are summarized
below:

e A probabilistic model for the 3D Gaussian Splatting
map to quantify the image rendering uncertainty.

¢ A novel Gaussian Splatting Shannon Mutual Informa-
tion (GauSS-MI) metric for real-time assessment of
visual mutual information from novel viewpoints.

e An active 3D Gaussian splatting reconstruction system
implementation based on GauSS-ML

« Extensive benchmark experiments against state-of-the-
art methods demonstrate the superior performance of
the proposed system in terms of visual fidelity and
reconstruction efficiency.

II. METHODOLOGY

This section presents the probabilistic model for 3D Gaus-
sian Splatting (3DGS) in visual uncertainty quantification,
followed by the formulation of Gaussian Splatting Shannon
Mutual Information (GauSS-MI) for view selection.

A. 3D Gaussian Splatting Mapping

The proposed system reconstructs the scene by 3DGS,
utilizing a collection of anisotropic 3D Gaussians, repre-
sented by G. Each 3D Gaussian ¢ contains the properties of
mean uu, and covariance Eu,, representing the geometrical
position and ellipsoidal shape in the world frame W, and
also optical properties including color ¢l and opacity al”.
By splatting and blending a series of ordered Gaussians N,

https://github.com/JohannaXie/GauSS-MI
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Ilustration of the proposed Gaussian Splatting Shannon Mutual Information (GauSS-MI) method.

the color C'Ul and depth DU! for each pixel are synthesized
as
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where dl represents the distance from camera pose o to the
position u% of Gaussian 7 along the camera ray. We denote
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Tl — o] H(l — ol (3)

as the cumulative transmittance of Gaussian ¢ along the ray.
At each reconstruction step, the 3D Gaussians are ex-
tended and initialized using the collected RGB-D image and
estimated camera pose [9]. Then the Gaussians iteratively
optimize both their geometric and optical parameters to
represent the captured scene with high visual fidelity.

B. 3D Gaussian probability

To model the information obtained from the 3DGS map
G by a random observation z, we first construct a random
variable r for each Gaussian. As we are going to optimize the
rendering result, we define the probability of a 3D Gaussian
i is reliable for rendering as P(rll) € (0,1). Then, the
probability of the 3D Gaussian ¢ is unreliable for rendering
is P(7l1) = 1 — P(rl). Additionally, we denote the odds
ratio ol € (0,+00) and log odds I} € (—oco,+00) of a
Gaussian by

P(r[i])) B P(TM)
P(rlly’ = 8 Pl
We assume each probability of the 3D Gaussian is inde-

pendent. At the initial stage of the mapping, we assume that
the agent has no prior information on the environment, i.e.,

Py(r)y = Py(7ly =05 Vieg ()

16 .= log (o) := log( ) @)
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Once a new observation Z, is obtained at time k, the standard
binary Bayesian filter can be used to update the probability
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where P(rlll|Z}) is the reliable probability of Gaussian i
under the observation Z. We refer to P(rl|Z;,) as the
inverse sensor model, thereby §(!/(Z;) is the odds ratio of
the inverse sensor model, which will be constructed and used
for updating the reliable probability P(r!")|Zy.;.). We further
use 0[1],‘, and 1’ ]k as a shorthand of ol’ ](Zl ) and l[z](Zl k)
respectively, referring to the odds ratio for Gaussian 7 based
on the observations from start to time k.

Given the observation Zj, we construct the P(rl"|Z;) as

1
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Therefore, the odds ratio of inverse sensor model 6!%/(Z;,)
can be derived as

P(rt| 2,
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where A, Ar > 0 are hyperparameters. L denotes the loss
between the observation 7, and the map, i.e., a loss image
between the observed groundtruth image and the rendered
image. We compute the loss image by

L = A C = Crll + (1 = Ae)| D — D ©)

where C, D denote the rendered color and depth images from
the reconstructed 3DGS map, Ck, Dk are the groundtruth
color and depth images from observation Zj.

As the 3DGS map optimizes the Gaussians by minimizing
the image loss, we use this loss to construct the inverse
sensor model, and the cumulative transmittance to regulate
the update rate.

To accelerate computation, in implementation, we update
the probability P(r(!l|Z;.;.) by computing log odds l[f:]k. Take
log of (6) and substitute (8),

W = 2T og ALy + 18, (10)

Therefore, the log odds of inverse sensor model can be
computed by rasterizing the mapping loss L, as (1).

C. Gaussian Splatting Shannon Mutual Information

Based on the proposed probability model and Shannon
Mutual Information theory, we then construct the Gaussian
Splatting Shannon mutual information (GauSS-MI) for visual
quality assessment of novel viewpoints.

Given the previous observations Z7.;_1, we are interested
in minimizing the expected uncertainty, i.e., conditional en-
tropy, of the map after receiving the agent’s next observation

zk. In information theory, the conditional entropy relates to
Mutual Information (MI) by

H(r|zk, Z1:—1) = H(r| Z1.5-1) (11)

To minimize the conditional entropy H (r|zx, Z1.5—1) is to
maximize the MI I(r; zix| Z1.x—1). Note here that we use zj
and Zj, to distinguish random variable and realized variable
for the observation at time k.

As we assume that the previous observations Zi.;_1 are
given and try to compute the MI for the new observation zy,
in the subsequent of this subsection, we omit the probability
condition Z;.;_1 and simplify z; into z. Therefore, the (11)
can be simplified as

H{(r|z)

As z is a random variable with independence among
elements, the total MI can be expressed as the summation
of I(r;2U]) between 29 over all measurement beams j €
{1,---,n.} [10].

= ZI(T;z[J]
j=1

Here, the measurement beams j € {1,---
picture pixel.

From information theory [10], [11], the mutual informa-
tion between two random variables is defined and can be
organized as

—I(T;Zk\lek—l)

=H(r)—1(r;2) (12)
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where P(zU] = Z) is only related to the observation, which

is referred to as the measurement prior. f(5[4(Z), o[l]k 1)
can be derived and written in shorthand as
o o+1
5 =
1(9,0) o471 o401
The function f(J,0) can be interpreted as an information
gain function.
We define the mutual information (14) between the 3DGS
map and the observation as Gaussian Splatting Shannon
Mutual Information, GauSS-MI.

log( ) (15)

D. Computation of Expected GauSS-MI

We further derive the computation of the expected mutual
information (14) for random viewpoints.

1) Measurement prior: We refer to the noise model of
RGB camera in [12], in which the expectation of the mea-
surement noise is related to luminance. Thus, we construct
the measurement prior P(z) for each pixel j as

255

= > P(
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where P(zUl|mU]) is the prior probability distribution of
the sensor with respect to luminance m € {0, -- ,255}. To
compute the expected measurement prior, we define P (ml7])
as

P(mbl) = (17)

1 formbl = MUl
0 otherwise

where MUl is the pixel’s expected luminance, which can be
computed from the expected RGB color (R, G, B) by the
luminance formula M = 0.299R + 0.587G + 0.114B. Thus
the measurement prior (16) can be simplified as

p(z[j]) - p(z[j]|M[j]) (18)

2) Information gain function: As there are no observa-
tions from random viewpoints, computing the loss image Ly
for §(Zy) is infeasible; thus, an expectation of Ly, is required.
We expect that the rendering result after reconstruction is
reliable, i.e., there is no loss between groundtruth and the
3DGS map G. Thus, we assume L, = 0 so that 6! = 0
in f(d,0). Then the information gain function (15) can be
derived as,

. (] .
1 = tog(*— %) = ~log(P(r 1)

The equation shows that when the reliable probability P(rl"l)
is low, the information gain function f will be high, consis-
tent with the intuition of information gain.

Overall, integrating (13)(14)(18)(19), the expected GauSS-
MI can be computed as

I(r;2) = Z Z I(r[i];zm)T[i]

19)
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III. SYSTEM IMPLEMENTATION
A. System Overview

The proposed active reconstruction system comprises a
reconstruction module and a planning module, as illustrated
in Figure 2. In this work, a mobile robot is equipped with
sensors that can capture color images and depth images and
estimate its pose. Given these messages, the reconstruction
module constructs and updates a 3D Gaussian splatting
(3DGS) model in real-time, while simultaneously generating
the 3D Gaussian probability map. Meanwhile, the planning
module creates a library of candidate viewpoints along with
the primitive trajectories. The optimal viewpoint and prim-
itive trajectory are subsequently determined by evaluating
both the viewpoint’s GauSS-MI and the trajectory’s motion
energy cost. The robot then follows the selected primitive
trajectory and captures images from the next-best viewpoint.
Given the new observations, the reconstruction module could
update the map. The process iterates and results in a high-
quality 3D reconstruction with detailed visual representation.

Reconstruction

3DGS
Reconstruction

3D Gaussian
Probability

View Planner

Viewpoint Primitive
Library

GauSS-MI

Next Best View
Selection

Best Primitive

Pose,
RGB-D images

Mobile Robot
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Fig. 2. Overview of proposed active 3D reconstruction system.

B. View Planning

1) Viewpoint Primitive Library: To determine the next
best viewpoint, we design an action library to generate a
set of candidate viewpoints, and choose the next best view
within the candidates. Inspired by the action generation
method proposed in [13], we design the action to the next
viewpoint by

a = [Uxy, Uz, W]

where vy, and v, represent the body frame linear velocity
in xg — yp plane and zp direction, and w,, is the body frame
angular velocity around the z; axis. We simplify the action of
2-dimensional horizontal movement into 1 dimension, which
can be compensated through the w, rotation. The action space
is given by sampling each velocity that,

A= {alvxy € Viy,v, € V,,w, € Q,} [©3))

In this paper, we assume that the sensor, normally with a
limited field of view, is equipped forward, i.e., facing the xg
axis. Thus, in the further forward propagation derivation, we
design the horizontal movement action vy, works on the yz
axis.

Given the action a = [vxy,V,w,] € A , the next
viewpoint is designed by forward propagation with duration
time T,

—Uxy T sin (Yo + w,T')
Usey T cos (Yo + w,T')
v, T
w, T

a';”) =0 forn=1,2,3

oy =00+ 22)

where (-)(") denotes the n-th derivatives, which constraints
the final state to ensure a stable picture taking on the next
viewpoint. A motion primitive trajectory or from current
state o (t) = oy to the next viewpoint o(t +T) = oy can
be derived in closed-form [14].

Overall, by defining the set of actions A, given the current
state oy, a library of candidate viewpoints ¥y = {o ¢} along
with the primitive trajectories X7 = {or} can be formed
as a viewpoint primitive library.

2) Next Best View Selection: The total reward for the next
best view evaluation includes the mutual information I (20)
and the motion cost J as

R:'lU]I—'lUJJ (23)



TABLE I
PARAMETERS OF THE PROPOSED SYSTEM

Parameter Value

hyperparameter on loss Ar, 1.7
hyperparameter on cumulative transmittance Ay, 7.0

Primitive duration time 7' 1.6s
reward weight on information wy 0.03
reward weight on motion cost w y 0.01

probability threshold 7 0.7
reconstruction terminate threshold ¢ 75%

where wy,wy > 0 are constant reward weights to balance
the range of two components. The motion cost J can be
calculated based on the trajectory o with respect to a
specific mobile robot. The next best view with primitive
o is selected by optimizing R over all feasible primitives,
which is then assigned to the controller for tracking.

IV. SIMULATION EXPERIMENTS

In this section, we present a series of simulation experi-
ments designed to validate the proposed method. We begin
by detailing the experimental setup and evaluation metrics.
Based on this, we initially validate the proposed system
(Section IV-A). Subsequently, we conduct experiments to
evaluate the proposed GauSS-MI metric from multiple per-
spectives: the efficiency of next-best-view selection (Sec-
tion IV-B), real-time computational performance (Section I'V-
C). Finally, we compare the complete system against baseline
methods in Section IV-D.

A. System Validation

1) Simulation Setup: The simulation environment is cre-
ated using Flightmare [15], featuring a configurable render-
ing engine within Unity? and a versatile drone dynamics
simulation. A quadrotor is employed as the agent for active
reconstruction, equipped with an image sensor providing
RGB-D images at a resolution of 640 x 480 and a 90 deg
Field of View (FOV). The online 3D Gaussian splatting
reconstruction is developed based on MonoGS [9], which
incorporates depth measurements to enhance the online re-
construction model. Both the proposed active reconstruction
system and the simulator operate on a desktop with a 32-core
i9-14900K CPU and an RTX4090 GPU. The parameters of
the proposed system are summarized in Table I.

2) Metrics: The evaluation focuses on assessing the visual
quality of the reconstruction results and the efficiency of
the active reconstruction process. Visual quality is evalu-
ated using Peak Signal-to-Noise Ratio (PSNR), Structural
Similarity Index (SSIM), and Learned Perceptual Image
Patch Similarity (LPIPS) to quantitatively compare rendered
images from the 3DGS model with a testing dataset of
ground-truth images. Efficiency is measured by calculating
the total length of the reconstruction path P and the number
of frames N;. To provide a quantitative assessment of the
efficiency of the reconstruction process, we introduce an
efficiency metric that combines visual quality and motion
effort, defined as £ = PSNR/log N t. The logarithmic

2https://unity.com/

transformation of the denominator is applied to align with
the PSNR calculation.

3) Simulation Result: We actively reconstruct three
scenes, the Oil Drum, the Drilling Machine, and the Potted
Plant, to validate the proposed system. The offline refinement
results, including image rendering and depth rendering, are
presented in Figure 3. The evaluations of visual quality
and efficiency are calculated and summarized in Table II.
The Oil Drum is characterized by a relatively simple ge-
ometry but detailed texture. The Drilling Machine exhibits
fine geometric structures, while the Potted Plant features a
highly cluttered geometric structure. The rendering results in
Figure 3 demonstrate a detailed visual fidelity with precise
geometric structures, highlighting the system’s capability to
capture intricate textures and structures.

B. Comparison Study of Active View Selection

To evaluate the efficiency of the proposed GauSS-MI
metric in selecting the next-best-view for high visual qual-
ity reconstruction, we conduct comparative experiments on
active view selection using a fixed number of frames.

1) Baselines: We benchmark our method against Fish-
erRF [8]°, a state-of-the-art radiance field-based active view
selection approach that quantifies the expected information
gain by constructing the Fisher information matrix. To ensure
a fair comparison, FisherRF is integrated into our system
by substituting the GauSS-MI evaluation I in (23) with
its FisherRF metric. Additionally, a random view selection
policy is implemented as a baseline to highlight the benefits
of using view selection strategies.

2) Results: The comparative experiment is performed
across three scenes, with the number of frames limited and
gradually increased for each method. We compute the PSNR
values for each test and visualize the results by plots in
Figure 4. The results show that both GauSS-MI and FisherRF
significantly outperform the random policy, demonstrating
the methods’ effectiveness in next-best-view selection for
enhancing visual quality. While the performance of GauSS-
MI and FisherRF is comparable, GauSS-MI achieves higher
PSNR values in most tests, validating its superior efficiency
in active view selection. The novel view synthesis results
for GauSS-MI, FisherRF, and the random policy, with a
fixed number of frames Ny = 200, are presented alongside
the ground truth on the left-hand side of Figure 5. These
visualizations further showcase the enhanced visual fidelity
reconstruction result of GauSS-MI, particularly in scenes fea-
turing complex geometric or textural details. The efficiency
on active view selection is especially advantageous for on-
board active reconstruction, where constrained computational
and battery resources necessitate minimizing the number of
frames and reconstruction time.

C. Computational Efficiency

We analyze the computational complexity of the proposed
GauSS-MI method, measure its average runtime, and com-

3FisherRF: https://github.com/JiangWenPL/FisherREF
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Fig. 3.  High-resolution novel view synthesis of the reconstruction result by the proposed system: color rendering against depth rendering.
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TABLE I
EVALUATION RESULTS AND COMPARISON OF SIMULATION EXPERIMENTS

Scene ! ‘ 0il Drum ? ‘ Drilling Machine 2 ‘ Potted Plant 2
Metric | Visual Quality | Efficiency | Visual Quality | Efficiency | Visual Quality | Efficiency
Method  |PSNRT SSIMT LPIPS||N; | P(m) | E+|PSNRT SSIMt LPIPS||N; | P(m) | E |PSNRT SSIMT LPIPS||N; | P(m) | E 1
Ours 3435 0986 0.068 | 141 61.04 16.0| 33.99 0995 0.040 | 122 36.16 16.3| 30.33 0.986 0.084 | 200 79.60 13.2
FUEL [3] 22.82 0915 0.186 | 165 1521 10.3| 21.08 0967 0.116 | 145 11.16 9.8 | 2539 0.963 0.149 | 205 17.28 11.0
NARUTO [16]| 31.84 0.976 0.072 | 3000 116.34 9.2 | 31.50 0.992 0.047 | 3000 9235 9.1 | 30.83 0.988 0.057 | 4000 157.75 8.6

! Simulation scenes are built by Flightmare [15].

2 Oil drum scene size: 5m x 4m x 3m. Drilling Machine scene size: 4m x 4m x 3m. Potted Plant scene size: 5m x 5m X 5m.
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Fig. 4. PSNR results for active view selection with a limited number

of frames. The maximum PSNR value for each test is annotated. The
abbreviations G’ and 'F’ denote GauSS-MI and FisherRF, respectively.

pare it with FisherRF [8], validating the real-time perfor-
mance of our metric.

1) Computational Complexity: The computation of
GauSS-MI is similar to 3DGS rasterization in that Eq. (20)
projects the information gain function (19) onto an image.
The algorithm is implemented in parallel using CUDA.
Assuming the current 3DGS map with N, Gaussians, the
image with N, pixels, and N, candidate viewpoints to be
evaluated, the computational complexity of GauSS-MI is
O(NpNygN.). In contrast, FisherRF’s complexity depends
on both candidate and observed views. With N, observed
views, FisherRF requires a complexity of O(N,Ny(N, +
N,.)) to evaluate all candidates, as it has to compute the

information from both observed and candidate views at each
decision step. Consequently, the computational cost scales
linearly with N, + NN., indicating the increasing runtime as
active reconstruction progresses. GauSS-MI, however, main-
tains consistent computation, scaling linearly with only N..
This efficiency stems from our probabilistic model, which
quantifies the information from prior observations with a
low computational overhead of O(2N,N,) during the map
update process. As a result, in the next-best-view decision
step, GauSS-MI evaluates only candidate views, achieving
low and stable computational complexity, making it ideal
for real-time applications.

2) Runtime: We conducted a complete active reconstruc-
tion experiment to measure the runtime of each method at
each planning timestep, as shown in Figure 6. GauSS-MI
achieves an average runtime of 5.55ms (182.2 fps), while
FisherRF averages 11.66 ms (85.8 fps). These results corrob-
orate the computational complexity analysis that GauSS-MI
maintains consistent runtime throughout the reconstruction
process, whereas FisherRF’s runtime increases due to its
dependence on the growing number of observed views.

D. Comparison Study of Active Reconstruction

This section evaluates and compares the complete system,
including the proposed view planning and active termination
condition. We select the state-of-the-art baselines employing
different map representations and uncertainty quantification
techniques to validate our system’s efficiency on visual
quality.

1) Baselines: To evaluate the efficacy of our proposed
method, we conducted a comparative analysis between our
active reconstruction system and existing systems, FUEL [3]
and NARUTO [16]. FUEL is a volumetric-based active
reconstruction system with no consideration of visual quality,
while NARUTO is a NeRF-based framework that addresses
radiance field uncertainty with a focus on geometry. For
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our study, we implemented the comparison using the open-
source codes for FUEL and NARUTO, employing their
default parameter settings. Each system, including the next
best view selection and path planning algorithm, captured
color images in the three simulation scenes, which are sub-
sequently employed to 3D Gaussian Splatting [2] for offline
model reconstruction. Evaluation of reconstruction quality
and efficiency was conducted using the metrics outlined in
Section IV-A.2.

2) Results: The quantitative results are presented in Ta-
ble II, while the qualitative visual comparisons are shown in
the right part of Figure 5. Our system demonstrates superior
efficiency across all scenes and attains the highest visual
quality in the Oil Drum and Drilling Machine. In the Potted
Plant scene, NARUTO slightly outperforms our system by a
small margin. However, it is worth noting that NARUTO
completed its reconstruction process after capturing thou-
sands of images, which contributed to its commendable re-
construction performance. The extensive collection of images
is attributed to NARUTO’s continuous high-frequency image
capture throughout its movement. The abundance of images
with significant overlap resulted in a lower active viewpoint
selection efficiency, indicating an inadequate assessment of
observed information and a suboptimal reconstruction strat-
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Novel view synthesis results compared to ground truth.

egy. In contrast, our system efficiently selects viewpoints
guided by GauSS-MI. As a result, we achieve comparable or
even superior visual quality to NARUTO while maintaining
consistently high efficiency.

In terms of total path length for active reconstruction,
FUEL stands out for completing the process with a no-
tably shorter trajectory compared to both our system and
NARUTO. This outcome aligns with expectations, given
that FUEL focuses solely on geometric completeness during
active reconstruction. However, despite its efficiency in path
length, FUEL consistently yields the lowest visual quality
and the reconstruction results exhibit poor texture quality,
as illustrated in Figure 5. This indicates the inadequacy of
relying solely on geometric evaluation for high-quality visual
reconstructions.

Overall, our system excels in active efficiency while si-
multaneously delivering high visual quality across all scenes.
This demonstrates the effectiveness of our probabilistic
model in evaluating observed information and the capability
of GauSS-MI in identifying optimal viewpoints to enhance
efficiency.

V. REAL-WORLD EXPERIMENTS

To validate the efficacy of the proposed method in practical
settings, we conduct real-world experiments using a Franka
Emika Panda robotic arm equipped with an Intel RealSense
D435 depth camera for capturing RGB-D images. The real-
world setup is shown in Figure 7(a). The active reconstruc-
tion system for real-world implementation integrates the on-
line 3DGS reconstruction algorithm with the proposed active
view sampling and selection method. Motion planning and
control for the Franka arm are implemented using the Movelt
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Fig. 7. Active reconstruction experiment with GauSS-MI in the real world.
(a) Experiment setup. (b) Novel view synthesis results.
TABLE III
EVALUATION RESULTS OF REAL-WORLD EXPERIMENTS
Metric | Visual Quality | Efficiency
Scene | PSNRT SSIMt LPIPS| | Ny | E1t
Toad 32.53 0.9336  0.2693 24 23.6
Niffler 28.20 0.9273 0.3020 36 18.1

framework *, facilitating precise pose control and reliable
feedback. All algorithms are executed on a desktop equipped
with a 32-core Intel i9-13900K CPU and an NVIDIA RTX
4090 GPU.

For the real-world demonstration, we actively recon-
structed two scenes: the Toad and the Niffler. The Toad
scene features relatively smooth surfaces, whereas the Nif-
fler exhibits intricate geometric details. Constrained by the
robot arm’s workspace and the minimal detection range of
the depth camera, the experimental scenes are limited to
the size of 0.2mx0.2mx0.2m.The novel view synthesis
results, presented in Figure 7(b), demonstrate the high visual
fidelity achieved by our method. Quantitative evaluation of
visual quality and reconstruction efficiency is summarized in
Table III. The results demonstrate the effectiveness and effi-
ciency of the proposed system in the real world, highlighting
its robustness across different scene complexities.

VI. CONCLUSION AND FUTURE WORK

This paper addresses a critical challenge in active recon-
struction—active view selection—with a focus on enhancing
visual quality. We first introduce an explicit probabilistic
model to quantify the uncertainty of visual quality, leveraging
3D Gaussian Splatting as the underlying representation.
Building on this, we propose Gaussian Splatting Shannon
Mutual Information (GauSS-MI), a novel algorithm for real-
time assessment of mutual information between measure-
ments from a novel viewpoint and the existing map. GauSS-
MI is employed to facilitate the active selection of the next
best viewpoints and is integrated into an active reconstruc-
tion system to evaluate its effectiveness in achieving high
visual fidelity in 3D reconstruction. Extensive experiments
across various simulated environments and real-world scenes
demonstrate the system’s ability to deliver superior visual

4https://github.com/moveit/moveit

quality over state-of-the-art methods, validating the effec-
tiveness of the proposed approach.
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